
Generating Collaborative Systems for Digital Libraries   |   Hilera et al.    195

José R. Hilera, Carmen Pagés,
J. Javier Martínez, J. Antonio

Gutiérrez, and Luis de-Marcos

An Evolutive Process to
Convert Glossaries into
Ontologies

dictionary, the outcome will be limited by the richness
of the definition of terms included in that dictionary. It
would be what is normally called a “lightweight” ontol-
ogy,6 which could later be converted into a “heavyweight”
ontology by implementing, in the form of axioms, know
ledge not contained in the dictionary. This paper describes
the process of creating a lightweight ontology of the
domain of software engineering, starting from the IEEE
Standard Glossary of Software Engineering Terminology.7

■■ Ontologies, the Semantic Web,
and Libraries

Within the field of librarianship, ontologies are already
being used as alternative tools to traditional controlled
vocabularies. This may be observed particularly within
the realm of digital libraries, although, as Krause asserts,
objections to their use have often been raised by the
digital library community.8 One of the core objections is
the difficulty of creating ontologies as compared to other
vocabularies such as taxonomies or thesauri. Nonetheless,
the semantic richness of an ontology offers a wide range
of possibilities concerning indexing and searching of
library documents.

The term ontology (used in philosophy to refer to
the “theory about existence”) has been adopted by the
artificial intelligence research community to define a cate-
gorization of a knowledge domain in a shared and agreed
form, based on concepts and relationships, which may be
formally represented in a computer readable and usable
format. The term has been widely employed since 2001,
when Berners-Lee et al. envisaged the Semantic Web,
which aims to turn the information stored on the Web into
knowledge by transforming data stored in every webpage
into a common scheme accepted in a specific domain.9 To
accomplish that task, knowledge must be represented in
an agreed-upon and reusable computer-readable format.
To do this, machines will require access to structured
collections of information and to formalisms which are
based on mathematical logic that permits higher levels of
automatic processing.

Technologies for the Semantic Web have been devel-
oped by the World Wide Web Consortium (W3C). The
most relevant technologies are RDF (Resource Description

This paper describes a method to generate ontologies from
glossaries of terms. The proposed method presupposes an
evolutionary life cycle based on successive transforma-
tions of the original glossary that lead to products of
intermediate knowledge representation (dictionary, tax-
onomy, and thesaurus). These products are characterized
by an increase in semantic expressiveness in comparison
to the product obtained in the previous transformation,
with the ontology as the end product. Although this
method has been applied to produce an ontology from
the “IEEE Standard Glossary of Software Engineering
Terminology,” it could be applied to any glossary of any
knowledge domain to generate an ontology that may be
used to index or search for information resources and
documents stored in libraries or on the Semantic Web.

F rom the point of view of their expressiveness or
semantic richness, knowledge representation tools
can be classified at four levels: at the basic level

(level 0), to which dictionaries belong, tools include defini-
tions of concepts without formal semantic primitives; at
the taxonomies level (level 1), tools include a vocabulary,
implicit or explicit, as well as descriptions of specialized
relationships between concepts; at the thesauri level (level
2), tools further include lexical (synonymy, hyperonymy,
etc.) and equivalence relationships; and at the reference
models level (level 3), tools combine the previous relation-
ships with other more complex relationships between
concepts to completely represent a certain knowledge
domain.1 Ontologies belong at this last level.

According to the hierarchic classification above,
knowledge representation tools of a particular level add
semantic expressiveness to those in the lowest levels in
such a way that a dictionary or glossary of terms might
develop into a taxonomy or a thesaurus, and later into an
ontology. There are a variety of comparative studies of
these tools,2 as well as varying proposals for systematically
generating ontologies from lower-level knowledge repre-
sentation systems, especially from descriptor thesauri.3

This paper proposes a process for generating a termino-
logical ontology from a dictionary of a specific knowledge
domain.4 Given the definition offered by Neches et al.
(“an ontology is an instrument that defines the basic
terms and relations comprising the vocabulary of a topic
area as well as the rules for combining terms and relations
to define extensions to the vocabulary”)5 it is evident that
the ontology creation process will be easier if there is a
vocabulary to be extended than if it is developed from
scratch.

If the developed ontology is based exclusively on the

José R. Hilera (jose.hilera@uah.es) is Professor, Carmen Pagés
(carmina.pages@uah.es) is Assistant Professor, J. Javier Mar-
tínez (josej.martinez@uah.es) is Professor, J. Antonio Gutiér-
rez (jantonio.gutierrez@uah.es) is Assistant Professor, and Luis
de-Marcos (luis.demarcos@uah.es) is Professor, Department of
Computer Science, Faculty of Librarianship and Documentation,
University of Alcalá, Madrid, Spain.

196   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

configuration management; data types; errors, faults,
and failures; evaluation techniques; instruction types;
language types; libraries; microprogramming; operating
systems; quality attributes; software documentation; soft-
ware and system testing; software architecture; software
development process; software development techniques;
and software tools.15

In the glossary, entries are arranged alphabetically. An
entry may consist of a single word, such as “software,” a
phrase, such as “test case,” or an acronym, such as “CM.”
If a term has more than one definition, the definitions are
numbered. In most cases, noun definitions are given first,
followed by verb and adjective definitions as applicable.
Examples, notes, and illustrations have been added to
clarify selected definitions.

Cross-references are used to show a term’s relations
with other terms in the dictionary: “contrast with” refers
to a term with an opposite or substantially different mean-
ing; “syn” refers to a synonymous term; “see also” refers
to a related term; and “see” refers to a preferred term or to
a term where the desired definition can be found.

Figure 2 shows an example of one of the definitions of
the glossary terms. Note that definitions can also include

Framework),10 which defines a common data model to
specify metadata, and OWL (Ontology Web Language),11
which is a new markup language for publishing and
sharing data using Web ontologies. More recently, the
W3C has presented a proposal for a new RDF-based
markup system that will be especially useful in the con-
text of libraries. It is called SKOS (Simple Knowledge
Organization System), and it provides a model for
expressing the basic structure and content of concept
schemes, such as thesauri, classification schemes, subject
heading lists, taxonomies, folksonomies, and other simi-
lar types of controlled vocabularies.12

The emergence of the Semantic Web has created great
interest within librarianship because of the new possibili-
ties it offers in the areas of publication of bibliographical
data and development of better indexes and better displays
than those that we have now in ILS OPACs.13 For that rea-
son, it is important to strive for semantic interoperability
between the different vocabularies that may be used in
libraries’ indexing and search systems, and to have com-
patible vocabularies (dictionaries, taxonomies, thesauri,
ontologies, etc.) based on a shared standard like RDF.

There are, at the present time, several proposals for
using knowledge organization systems as alternatives to
controlled vocabularies. For example, folksonomies, though
originating within the Web context, have been proposed by
different authors for use within libraries “as a powerful,
flexible tool for increasing the user-friendliness and inter-
activity of public library catalogs.”14 Authors argue that the
best approach would be to create interoperable controlled
vocabularies using shared and agreed-upon glossaries and
dictionaries from different domains as a departure point,
and then to complete evolutive processes aimed at semantic
extension to create ontologies, which could then be com-
bined with other ontologies used in information systems
running in both conventional and digital libraries for index-
ing as well as for supporting document searches. There are
examples of glossaries that have been transformed into
ontologies, such as the Cambridge Healthtech Institute’s
“Pharmaceutical Ontologies Glossary and Taxonomy”
(http://www.genomicglossaries.com/content/ontolo	
gies.asp), which is an “evolving terminology for emerging
technologies.”

■■ IEEE Standard Glossary of Software
Engineering Terminology

To demonstrate our proposed method, we will use a
real glossary belonging to the computer science field,
although it is possible to use any other. The glossary,
available in electronic format (PDF), defines approxi-
mately 1,300 terms in the domain of software engineering
(figure 1). Topics include addressing assembling, compil-
ing, linking, loading; computer performance evaluation;

Figure 1. Cover of the Glossary document

Generating Collaborative Systems for Digital Libraries   |   Hilera et al.    197

4.	 Define the classes and the class hierarchy
5.	 Define the properties of classes (slots)
6.	 Define the facets of the slots
7.	 Create instances

As outlined in the Introduction, the ontology devel-
oped using our method is a terminological one. Therefore
we can ignore the first two steps in Noy’s and McGuinness’
process as the concepts of the ontology coincide with the
terms of the glossary used.

Any ontology development process must take into
account the basic stages of the life cycle, but the way of
organizing the stages can be different in different meth-
ods. In our case, since the ontology has a terminological
character, we have established an incremental develop-
ment process that supposes the natural evolution of the
glossary from its original format (dictionary or vocabu-
lary format) into an ontology. The proposed life cycle
establishes a series of steps or phases that will result in
intermediate knowledge representation tools, with the
final product, the ontology, being the most semantically
rich (figure 4).

Therefore this is a product-driven process, in which
the aim of every step is to obtain an intermediate product
useful on its own. The intermediate products and the final

examples associated with the described concept.
In the resulting ontology, the examples were
included as instances of the corresponding class.
In figure 2, it can be seen that the definition refers
to another glossary on programming languages
(Std 610.13), which is a part of the series of dic-
tionaries related to computer science (“IEEE Std
610,” figure 3). Other glossaries which are men-
tioned in relation to some references about term
definitions are 610.1, 610.5, 610.7, 610.8, and 610.9.

To avoid redundant definitions and pos-
sible inconsistencies, links must be implemented
between ontologies developed from those glossa-
ries that include common concepts. The ontology
generation process presented in this paper is
meant to allow for integration with other ontolo-
gies that will be developed in the future from the
other glossaries.

In addition to the explicit references to other
terms within the glossary and to terms from other glos-
saries, the textual definition of a concept also has implicit
references to other terms. For example, from the phrase
“provides features designed to facilitate expression of
data structures” included in the definition of the term
high order language (figure 2), it is possible to determine
that there is an implicit relationship between this term
and the term data structure, also included in the glossary.
These relationships have been considered in establishing
the properties of the concepts in the developed ontology.

■■ Ontology Development Process

Many ontology development methods presuppose a life
cycle and suggest technologies to apply during the pro-
cess of developing an ontology.16 The method described
by Noy and McGuinness is helpful when beginning this
process for the first time.17 They establish a seven-step
process:

1.	 Determine the domain and scope of the ontology
2.	 Consider reusing existing ontologies
3.	 Enumerate important terms in the ontology

Figure 2. Example of term definition in the IEEE Glossary

Figure 3. IEEE Computer Science Glossaries

610—Standard Dictionary of Computer Terminology
610.1—Standard Glossary of Mathematics of Computing Terminology
610.2—Standard Glossary of Computer Applications Terminology
610.3—Standard Glossary of Modeling and Simulation Terminology
610.4—Standard Glossary of Image Processing Terminology
610.5—Standard Glossary of Data Management Terminology
610.6—Standard Glossary of Computer Graphics Terminology
610.7—Standard Glossary of Computer Networking Terminology
610.8—Standard Glossary of Artificial Intelligence Terminology
610.9—Standard Glossary of Computer Security and Privacy Terminology
610.10—Standard Glossary of Computer Hardware Terminology
610.11—Standard Glossary of Theory of Computation Terminology
610.12—Standard Glossary of Software Engineering Terminology
610.13—Standard Glossary of Computer Languages Terminology

high order language (HOL). A programming language that requires little knowledge of the computer on which a program will run, can be
translated into several difference machine languages, allows symbolic naming of operations and addresses, provides features designed
to facilitate expression of data structures and program logic, and usually results in several machine instructions for each program state-
ment. Examples include Ada, COBOL, FORTRAN, ALGOL, PASCAL. Syn: high level language; higher order language; third gen-
eration language. Contrast with: assembly language; fifth generation language; fourth generation language; machine language.
Note: Specific languages are defined in P610.13

198   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

Since there are terms with different meanings (up
to five in some cases) in the IEEE Glossary of Software
Engineering Terminology, during dictionary development
we decided to create different concepts (classes) for the
same term, associating a number to these concepts to
differentiate them. For example, there are five different
definitions for the term test, which is why there are five
concepts (Test1–Test5), corresponding to the five meanings
of the term: (1) An activity in which a system or compo-
nent is executed under specified conditions, the results
are observed or recorded, and an evaluation is made of
some aspect of the system or component; (2) To conduct
an activity as in (1); (3) A set of one or more test cases; (4)
A set of one or more test procedures; (5) A set of one or
more test cases and procedures.

Taxonomy

The proposed lifecycle establishes a stage for the con-
version of a dictionary into a taxonomy, understanding
taxonomy as an instrument of concepts categorization,

product are a dictionary, which has a formal and computer
processed structure, with the terms and their definitions in
XML format; a taxonomy, which reflects the hierarchic rela-
tionships between the terms; a thesaurus, which includes
other relationships between the terms (for example, the
synonymy relationship); and, finally, the ontology, which
will include the hierarchy, the basic relationships of the the-
saurus, new and more complex semantic relationships, and
restrictions in form of axioms expressed using description
logics.18 The following paragraphs describe the way each
of these products is obtained.

Dictionary

The first step of the proposed development process con-
sists of the creation of a dictionary in XML format with
all the terms included in the IEEE Standard Glossary of
Software Engineering Terminology and their related defini-
tions. This activity is particularly mechanical and does
not need human intervention as it is basically a transfor-
mation of the glossary from its original format (PDF) into
a format better suited to the development process.

All formats considered for the dictionary are based
on XML, and specifically on RDF and RDF schema.
In the end, we decided to work with the standards
DAML+OIL and OWL,19 though we are not opposed to
working with other languages, such as SKOS or XMI,20
in the future. (In the latter case, it would be possible
to model the intermediate products and the ontology
in UML graphic models stored in xml files.)21 In our
project, the design and implementation of all products
has been made using an ontology editor. We have used
OilEd (with OilViz Plugin) as editor, both because of its
simplicity and because it allows the exportation to OWL
and DAML formats. However, with future maintenance
and testing in mind, we decided to use Protégé (with
OWL plugin) in the last step of the process, because this
is a more flexible environment with extensible mod-
ules that integrate more functionality such as ontology
annotation, evaluation, middleware service, query and
inference, etc.

Figure 5 shows the dictionary entry for “high order
language,” which appears in figure 2. Note that the dic-
tionary includes only owl:class (or daml:class) to mark the
term; rdf:label to indicate the term name; and rdf:comment
to provide the definition included in the original glossary.

Figure 4. Ontology development process

<owl:Class rdf:about=”#HighOrderLanguage”>

 <rdfs:label>HighOrderLanguage</rdfs:label>

 <rdfs:comment><![CDATA[A programming language
that requires little knowledge of the
computer on which a program will
run, can be translated into several
different machine languages, allows
symbolic naming of operations
and addresses, provides features
designed to facilitate expression of
data structures and program logic,
and usually results in several machine
instructions for each program
statement.]]>

 </rdfs:comment>

</owl:Class>

Figure 5. Example of dictionary entry

Generating Collaborative Systems for Digital Libraries   |   Hilera et al.    199

example, when analyzing the definition of the term com-
piler: “(Is) A computer program that translates programs
expressed in a high order language into their machine
language equivalent,” it is possible to deduce that com-
piler is a subconcept of computer program, which is also
included in the glossary.) In addition to the lexical or syn-
tactic analysis, it is necessary for an expert in the domain
to perform a semantic analysis to complete the develop-
ment of the taxonomy.

The implementation of the hierarchical relation-
ships among the concepts is made using rdfs:subClassOf,
regardless of whether the taxonomy is implemented in
OWL or DAML format, since both languages specify this
type of relationship in the same way. Figure 6 shows an
example of a hierarchical relationship included in the
definition of the concept pictured in figure 5.

Thesaurus

According to the International Organization for
Standardization (ISO), a thesaurus is “the vocabulary of a
controlled indexing language, formally organized in order
to make explicit the a priori relations between concepts
(for example ‘broader’ and ‘narrower’).”25 This definition
establishes the lexical units and the semantic relationships
between these units as the elements that constitute a the-
saurus. The following is a sample of the lexical units:

■■ Descriptors (also called “preferred terms”): the terms
used consistently when indexing to represent a con-
cept that can be in documents or in queries to these
documents. The ISO standard introduces the option
of adding a definition or an application note to every
term to establish explicitly the chosen meaning. This
note is identified by the abbreviation SN (Scope
Note), as shown in figure 7.

■■ Non-descriptors (“non-preferred terms”): the syn-
onyms or quasi-synonyms of a preferred term. A
nonpreferred term is not assigned to documents
submitted to an indexing process, but is provided as
an entry point in a thesaurus to point to the appropri-
ate descriptor. Usually the descriptors are written in
capital letters and the nondescriptors in small letters.

■■ Compound descriptors: the terms used to represent
complex concepts and groups of descriptors, which
allow for the structuring of large numbers of thesau-
rus descriptors into subsets called micro-thesauri.

In addition to lexical units, other fundamental
elements of a thesaurus are semantic relationships
between these units. The more common relationships
between lexical units are the following:

■■ Equivalence: the relationship between the descrip-
tors and the nondescriptors (synonymous and

that is, as a systematical classification in a traditional way.
As Gilchrist states, there is no consensus on the meaning
of terms like taxonomy, thesaurus, or ontology.22 In addi-
tion, much work in the field of ontologies has been done
without taking advantage of similar work performed in
the fields of linguistics and library science.23 This situa-
tion is changing because of the increasing publication of
works that relate the development of ontologies to the
development of “classic” terminological tools (vocabular-
ies, taxonomies, and thesauri).

This paper emphasizes the importance and useful-
ness of the intermediate products created at each stage
of the evolutive process from glossary to ontology. The
end product of the initial stage is a dictionary expressed
as XML. The next stage in the evolutive process (figure
4) is the transformation of that dictionary into a tax-
onomy through the addition of hierarchical relationships
between concepts.

To do this, it is necessary to undertake a lexical-
semantic analysis of the original glossary. This can
be done in a semiautomatic way by applying natural
language processing (NLP) techniques, such as those
recommended by Morales-del-Castillo et al.,24 for creat-
ing thesauri. The basic processing sequence in linguistic
engineering comprises the following steps: (1) incorpo-
rate the original documents (in our case the dictionary
obtained in the previous stage) into the information sys-
tem; (2) identify the language in which they are written,
distinguishing independent words; (3) “understand” the
processed material at the appropriate level; (4) use this
understanding to transform, search, or traduce data; (5)
produce the new media required to present the produced
outcomes; and finally, (6) present the final outcome to
human users by means of the most appropriate periph-
eral device—screen, speakers, printer, etc.

An important aspect of this process is natural lan-
guage comprehension. For that reason, several different
kinds of programs are employed, including lemmatizers
(which implement stemming algorithms to extract the
lexeme or root of a word), morphologic analyzers (which
glean sentence information from their constituent ele-
ments: morphemes, words, and parts of speech), syntactic
analyzers (which group sentence constituents to extract
elements larger than words), and semantic models (which
represent language semantics in terms of concepts and
their relations, using abstraction, logical reasoning, orga-
nization and data structuring capabilities).

From the information in the software engineering
dictionary and from a lexical analysis of it, it is possible
to determine a hierarchical relationship when the name
of a term contains the name of another one (for example,
the term language and the terms programming language
and hardware design language), or when expressions such
as “is a” linked to the name of another term included in
the glossary appear in the text of the term definition. (For

200   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

indicating that high order language relates to both
assembly and machine languages.

The life cycle proposed in this paper (figure 4) includes
a third step or phase that transforms the taxonomy
obtained in the previous phase into a thesaurus through
the incorporation of relationships between the concepts
that complement the hierarchical relations included in the
taxonomy. Basically, we have to add two types of relation-
ships—equivalence and associative, represented in the
standard thesauri with UF (and USE) and RT respectively.

We will continue using XML to implement this new
product. There are different ways of implementing a
thesaurus using a language based on XML. For example,
Matthews et al. proposed a standard RDF format,26
where as Hall created an ontology in DAML.27 In both
cases, the authors modeled the general structure of

quasi-synonymous). ISO establishes that the abbrevia-
tion UF (Used For) precedes the nondescriptors linked
to a descriptor; and the abbreviation USE is used in
the opposite case. For example, a thesaurus developed
from the IEEE glossary might include a descriptor
“high order language” and an equivalence relationship
with a nondescriptor “high level language” (figure 7).

■■ Hierarchical: a relationship between two descrip-
tors. In the thesaurus one of these descriptors has
been defined as superior to the other one. There are
no hierarchical relationships between nondescrip-
tors, nor between nondescriptors and descriptors. A
descriptor can have no lower descriptors or several of
them, and no higher descriptors or several of them.
According to the ISO standard, hierarchy is expressed
by means of the abbreviations BT (Broader Term), to
indicate the generic or higher descriptors, and NT
(Narrower Term), to indicate the specific or lower
descriptors. The term at the head of the hierarchy
to which a term belongs can be included, using the
abbreviation TT (Top Term). Figure 7 presents these
hierarchical relationships.

■■ Associative: a reciprocal relationship that is estab-
lished between terms that are neither equivalent nor
hierarchical, but are semantically or conceptually
associated to such an extent that the link between
them should be made explicit in the controlled
vocabulary on the grounds that it may suggest
additional terms for use in indexing or retrieval.
It is generally indicated by the abbreviation RT
(Related Term). There are no associative relationships
between nondescriptors and descriptors, or between
descriptors already linked by a hierarchical relation.
It is possible to establish associative relationships
between descriptors belonging to the same or differ-
ent category. The associative relationships can be of
very different types. For example, they can represent
causality, instrumentation, location, similarity, origin,
action, etc. Figure 7 shows two associative relations,

..

HIGH ORDER LANGUAGE (descriptor)

 SN A programming language that...

 UF High level language (no-descriptor)

 UF Third generation language (no-descriptor)

 TT LANGUAGE

 BT PROGRAMMING LANGUAGE

 NT OBJECT ORIENTED LANGUAGE

 NT DECLARATIVE LANGUAGE

 RT ASSEMBLY LANGUAGE (contrast with)

 RT MACHINE LANGUAGE (contrast with)

..

High level language

 USE HIGH ORDER LANGUAGE
..

Third generation language

 USE HIGH ORDER LANGUAGE

..

Figure 7. Fragment of a thesaurus entry

Figure 6. Example of taxonomy entry

<owl:Class rdf:about="#HighOrderLanguage">

 ...

 <rdfs:subClassOf>

 <owl:Class rdf:about="#ProgrammingLanguage"/>

 </rdfs:subClassOf>

</owl:Class>

Generating Collaborative Systems for Digital Libraries   |   Hilera et al.    201

terms. For example:

<owl:ObjectProperty rdf:about="#UF">
<owl:inverseOf rdf:resource="#USE"/>.

Or using the glossary notation:

<owl:ObjectProperty rdf:about="#Syn">
<owl:inverseOf rdf:resource="#See"/>.

■■ The rest of the associative relationships (RT) that
were included in the thesaurus correspond to the
cross-references of the type “Contrast with” and “See
also” that appear explicitly in the IEEE glossary.

■■ Neither compound descriptors nor groups of descrip-
tors have been implemented because there is no such
structure in the glossary.

Ontology

Ding and Foo state that “ontology promotes standard-
ization and reusability of information representation
through identifying common and shared knowledge.
Ontology adds values to traditional thesauri through
deeper semantics in digital objects, both conceptually,
relationally and machine understandably.”29 This seman-
tic richness may imply deeper hierarchical levels, richer
relationships between concepts, the definition of axioms
or inference rules, etc.

The final stage of the evolutive process is the transfor-
mation of the thesaurus created in the previous stage into
an ontology. This is achieved through the addition of one
or more of the basic elements of semantic complexity that
differentiates ontologies from other knowledge represen-
tation standards (such as dictionaries, taxonomies, and
thesauri). For example:

■■ Semantic relationships between the concepts (classes)
of the thesaurus have been added as properties or
ontology slots.

■■ Axioms of classes and axioms of properties. These
are restriction rules that are declared to be sat-
isfied by elements of ontology. For example, to
establish disjunctive classes (<owl:Class rdf:about
="*HigOrderLanguage"> <owl:disjointWith> <owl:Class
rdf:about="* MachineLanguage"/>), have been
defined, and quantification restrictions (existential or
universal) and cardinality restrictions in the relation-
ships have been implemented as properties.

Software based on techniques of linguistic analysis
has been developed to facilitate the establishment of the
properties and restrictions. This software analyzes the
definition text for each of the more than 1,500 glossary
terms (in thesaurus format), isolating those words that

a thesaurus from classes (rdf:Class or daml:class) and
properties (rdf:Property or daml:ObjectProperty). In the
first case they proposed five classes: ThesaurusObject,
Concept, TopConcept, Term, ScopeNote; and several
properties to implement the relations, like hasScope-
Note (SN), IsIndicatedBy, PreferredTerm, UsedFor (UF),
ConceptRelation, BroaderConcept (BT), NarrowerConcept
(NT), TopOfHierarchy (TT) and isRelatedTo (RT).

Recently the W3C has developed the SKOS specifica-
tion, created to define knowledge organization schemes.
In the case of thesauri, SKOS includes specific tags,
such as skos:Concept, skos:scopeNote (SN), skos:broader
(BT), skos:narrower (NT), skos:related (RT), etc., that are
equivalent to those listed in the previous paragraph.
Our specification does not make any statement about the
formal relationship between the class of SKOS concept
schemes and the class of OWL ontologies, which will
allow different design patterns to be explored for using
SKOS in combination with OWL.

Although any of the above-mentioned formats could
be used to implement the thesaurus, given that the end-
product of our process is to be an ontology, our proposal
is that the product to be generated during this phase
should have a format compatible with the final ontology
and with the previous taxonomy. Therefore a minimal
number of changes will be carried out on the product
created in the previous step, resulting in a knowledge
representation tool similar to a thesaurus. That tool does
not need to be modified during the following (final) phase
of transformation into an ontology. Nevertheless, if for
some reason it is necessary to have the thesaurus in one
of the other formats (such as SKOS), it is possible to apply
a simple XSLT transformation to the product. Another
option would be to integrate a thesaurus ontology, such as
the one proposed by Hall,28 with the ontology represent-
ing the IEEE glossary.

In the thesaurus implementation carried out in our
project, the following limitations have been considered:

■■ Only the hierarchical relationships implemented in
the taxonomy have been considered. These include
relationsips of type “is-a,” that is, generalization rela-
tionships or type–subset relationships. Relationships
that can be included in the thesaurus marked with
TT, BT, and NT, like relations of type “part of” (that
is, partative relationships) have not been considered.
Instead of considering them as hierarchical relation-
ships, the final ontology includes the possibility of
describing classes as a union of classes.

■■ The relationships of synonymy (UF and USE) used to
model the cross-references in the IEEE glossary (“Syn”
and “See,” respectively) were implemented as equiv-
alent terms, that is, as equivalent axioms between
classes (owl:equivalentClass or daml:sameClassAs),
with inverse properties to reflect the preference of the

202   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

match the name of other glossary terms (or a word in
the definition text of other glossary terms). The isolated
words will then be candidates for a relationship between
both of them. (Figure 8 shows the candidate properties
obtained from the Software Engineering glossary.) The
user then has the option of creating relationships with
the identified candidate words. The user must indicate,
for every relationship to be created, the restriction type
that it represents as well as existential or universal quan-
tification or cardinality (minimum or maximum). After
confirming this information, the program updates the
file containing the ontology (OWL or DAML), adding the
property to the class that represents the processed term.

Figure 9 shows an example of the definition of two prop-
erties and its application to the class HighOrderLanguage:
a property Express with existential quantification over the
class DataStructure to indicate that a language must repre-
sent at least one data structure; and a property TranslateTo
of universal type to indicate that any high-level language
is translated into machine language (MachineLanguage).

■■ Results, Conclusions,
and Future Work

The existence of ontologies of specific knowledge domains
(software engineering in this case) facilitates the process
of finding resources about this discipline on the Semantic
Web and in digital libraries, as well as the reuse of learn-
ing objects of the same domain stored in repositories
available on the Web.30 When a new resource is indexed
in a library catalog, a new record that conforms to the
ontology conceptual data model may be included. It
will be necessary to assign its properties according to
the concept definition included in the ontology. The user
may later execute semantic queries that will be run by the
search system that will traverse the ontology to identify
the concept in which the user was interested to launch a
wider query including the resources indexed under the
concept. Ontologies, like the one that has been “evolved,”
may also be used in an open way to index and search for
resources on the Web. In that case, however, semantic
search engines such as Swoogle (http://swoogle.umbc	
.edu/), are required in place of traditional syntactic search
engines, such as Google.

The creation of a complete ontology of a knowledge
domain is a complex task. In the case of the domain
presented in this paper, that of software engineering,
although there have been initiatives toward ontology cre-
ation that have yielded publications by renowned authors
in the field,31 a complete ontology has yet to be created
and published.

This paper has described a process for developing
a modest but complete ontology from a glossary of ter-
minology, both in OWL format and DAML+OIL format,

accept
access
accomplish
account
achieve
adapt
add
adjust
advance
affect
aggregate
aid
allocate
allow
allow symbolic

naming
alter
analyze
apply
approach
approve
arrangement
arrive
assign
assigned by
assume
avoid
await
begin
break
bring
broke down
builds
call
called by
can be
can be input
can be used as
can operate in
cannot be usedas
carry out
cause
change
characterize
combine
communicate
compare
comply
comprise
conduct
conform
consist
constrain
construct
contain
contains no
contribute
control
convert
copy
correct
correspond
count
create
debugs
decompiles
decomposedinto
decrease
define
degree
delineate
denote
depend
depict
describe
design
designate
detect
determine
develop
development

direct
disable
disassembles
display
distribute
divide
document
employ
enable
encapsulate
encounter
ensure
enter
establish
estimate
establish
evaluate
examine
exchange
execute after
execute in
executes
expand
express
express as
extract
facilitate
fetch
fill
follow
fulfil
generate
give
give partial
given constrain
govern
have
have associated
have met
have no
hold
identify
identify request
ignore
implement
imply
improve
incapacitate
include
incorporate
increase
indicate
inform
initiate
insert
install
intend
interact with
interprets
interrelate
investigate
invokes
is
is a defect in
is a form of
is a method of
is a mode of
is a part
is a part of
is a sequence
is a sequenceof
is a technique
is a techniqueof
is a type
is a type of
is ability
is activated by
is adjusted by
is applied to
is based
is called by

is composed
is contained
is contained in
is establish
is established
is executed after
is executed by
is incorrect
is independent of
is manifest
is measured in
is not
is not subdivided in
is part
is part of
is performed by
is performed on
is portion
is process by
is produce by
is produce in
is ratio
is represented by
is the output
is the result of
is translated by
is type
is used
is used in
isolate
know
link
list
load
locate
maintain
make
make up
may be
measure
meet
mix
modify
monitors
move
no contain
no execute
no relate
no use
not be
connected
not erase
not fill
not have
not involve
not involving
not translate
not use
occur
occur in
occur in a
operate
operatewith
optimize
order
output
parses
pas
pass test
perform
permit
permitexecute
permit the
execution
pertaining
place
preclude
predict
prepare
prescribe
present

present for
prevent
preventaccessto
process
produce
produce no
propose
provide
rank
reads
realize
receive
reconstruct
records
recovery
refine
reflect
reformat
relate
relation
release
relocates
remove
repair
replace
represent
request
require
reserve
reside
restore
restructure
result
resume
retain
retest
returncontrolto
reviews
satisfy
schedule
send
server
set
share
show
shutdown
specify
store
store in
structure
submission of
supervise
supports
suppress
suspend
swap
synchronize
take
terminate
test
there are no
through
throughout
transfer
transform
translate
transmit
treat
through
understand
update
use
use in
use to
utilize
value
verify
work in
writes

Figure 8. Candidate properties obtained from the linguistic
analysis of the Software Engineering glossary

Generating Collaborative Systems for Digital Libraries   |   Hilera et al.    203

to each term.) We defined 324 properties or relationships
between these classes. These are based on a semiauto-
mated linguistic analysis of the glossary content (for
example, Allow, Convert, Execute, OperateWith, Produces,
Translate, Transform, Utilize, WorkIn, etc.), which will be
refined in future versions.

The authors’ aim is to use this ontology, which we
have called OntoGLOSE (Ontology GLossary Software
Engineering), to unify the vocabulary. OntoGLOSE will
be used in a more ambitious project, whose purpose is
the development of a complete ontology in software engi-
neering from the SWEBOK Guide.32

Although this paper has focused on this ontology, the
method that has been described may be used to generate
an ontology from any dictionary. The flexibility that OWL
permits for ontology description, along with its compat-
ibility with other RDF-based metadata languages, makes
possible interoperability between ontologies and between
ontologies and other controlled vocabularies and allows
for the building of merged representations of multiple
knowledge domains. These representations may eventu-
ally be used in libraries and repositories to index and
search for any kind of resource, not only those related to
the original field.

■■ Acknowledgments

This research is co-funded by the Spanish Ministry
of Industry, Tourism and Commerce PROFIT program
(grant TSI-020100-2008-23). The authors also want to
acknowledge support from the TIFyC research group at
the University of Alcala.

References and Notes

1.	 M. Dörr et al., State of the Art in Content Standards (Amster-
dam: OntoWeb Consortium, 2001).

2.	 D. Soergel, “The Rise of Ontologies or the Reinvention
of Classification,” Journal of the American Society for Information
Science 50, no. 12 (1999): 1119–20; A. Gilchrist, “Thesauri, Tax-
onomies and Ontologies—An Etymological Note,” Journal of
Documentation 59, no. 1 (2003): 7–18.

3.	 B. J. Wielinga et al., “From Thesaurus to Ontology,” Pro-
ceedings of the 1st International Conference on Knowledge Capture
(New York: ACM, 2001): 194–201: J. Qin and S. Paling, “Con-
verting a Controlled Vocabulary into an Ontology: The Case of
GEM,” Information Research 6 (2001): 2.

4.	 According to Van Heijst, Schereiber, and Wielinga, ontolo-
gies can be classified as terminological ontologies, information
ontologies, and knowledge modeling ontologies; terminological
ontologies specify the terms that are used to represent knowl-
edge in the domain of discourse, and they are in use principally
to unify vocabulary in a certain domain. G. Van Heijst, A. T.

which is ready to use in the Semantic Web. As described
at the opening of this article, our aim has been to create
a lightweight ontology as a first version, which will later
be improved by including more axioms and relationships
that increase its semantic expressiveness. We have tried to
make this first version as tailored as possible to the initial
glossary, knowing that later versions will be improved by
others who might take on the work. Such improvements
will increase the ontology’s utility, but will make it a less-
faithful representation of the IEEE glossary from which it
was derived.

The ontology we have developed includes 1,521
classes that correspond to the same number of concepts
represented in the IEEE glossary. (Included in this num-
ber are the different meanings that the glossary assigns

<owl:Class rdf:about="#HighOrderLanguage">

 ...

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#Express"/>

 <owl:someValuesFrom>

 <owl:Class rdf:about="#DataStructure"/>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#TranslateTo"/>

 <owl:allValuesFrom>

 <owl:Class rdf:about="#MachineLanguage"/>

 </owl:allValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

Figure 9. Example of ontology entry

204   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

20.	 W3C, SKOS; Object Management Group, XML Metadata
Interchange (XMI), 2003, http://www.omg.org/technology/doc-
uments/formal/xmi.htm (accessed Oct. 5, 2009).

21.	 UML (Unified Modeling Language) is a standardized
general-purpose modeling language (http://www.uml.org).
Nowadays, different UML plugins for ontologies’ editors exist.
These plugins allow working with UML graphic models. Also,
it is possible to realize the UML models with a CASE tool, to
export them to XML format, and to transform them to the ontol-
ogy format (for example, OWL) using a XSLT sheet, as the one
published in D. Gasevic, “UMLtoOWL: Converter from UML to
OWL,” http://www.sfu.ca/~dgasevic/projects/UMLtoOWL/
(accessed Oct. 5, 2009).

22.	 Gilchrist, “Thesauri, Taxonomies and Ontologies.”
23.	 Soergel, “The Rise of Ontologies or the Reinvention of

Classification.”
24.	 J. M. Morales-del-Castillo et al., “A Semantic Model of

Selective Dissemination of Information for Digital Libraries,”
Information Technology & Libraries 28, no. 1 (2009): 22–31.

25.	 International Standards Organization, ISO 2788:1986 Doc-
umentation—Guidelines for the Establishment and Develop-
ment of Monolingual Thesauri (Geneve: International Standards
Organization, 1986).

26.	 B. M. Matthews, K. Miller, and M. D. Wilson, “A Thesau-
rus Interchange Format in RDF,” 2002, http://www.w3c.rl.ac
.uk/SWAD/thes_links.htm (accessed Feb. 10, 2009).

27.	 M. Hall, “CALL Thesaurus Ontology in DAML,” Dynam-
ics Research Corporation, 2001, http://orlando.drc.com/daml/
ontology/CALL-Thesaurus (accessed Oct. 5, 2009).

28.	 Ibid.
29.	 Y. Ding and S. Foo, “Ontology Research and Develop-

ment. Part 1—A Review of Ontology Generation,” Journal of
Information Science 28, no. 2 (2002): 123–36. See also B. H. Kwas-
nik, “The Role of Classification in Knowledge Representation
and Discover,” Library Trends 48 (1999): 22–47.

30.	 S. Otón et al., “Service Oriented Architecture for the Imple-
mentation of Distributed Repositories of Learning Objects,”
International Journal of Innovative Computing, Information & Con-
trol (2010), forthcoming.

31.	 O. Mendes and A. Abran, “Software Engineering Ontol-
ogy: A Development Methodology,” Metrics News 9 (2004):
68–76; C. Calero, F. Ruiz, and M. Piattini, Ontologies for Software
Engineering and Software Technology (Berlin: Springer, 2006).

32.	 IEEE, Guide to the Software Engineering Body of Knowledge
(SWEBOK) (Los Alamitos, Calif.: IEEE Computer Society, 2004),
http:// www.swebok.org (accessed Oct. 5, 2009).

Schereiber, and B. J. Wielinga, “Using Explicit Ontologies in KBS
Development,” International Journal of Human & Computer Studies
46, no. 2/3 (1996): 183–292.

5.	 R. Neches et al., “Enabling Technology for Knowledge
Sharing,” AI Magazine 12, no. 3 (1991): 36–56.

6.	 O. Corcho, F. Fernández-López, and A. Gómez-Pérez,
“Methodologies, Tools and Languages for Buildings Ontologies.
Where Is Their Meeting Point?” Data & Knowledge Engineering 46,
no. 1 (2003): 41–64.

7.	 Intitute of Electrical and Electronics Engineers (IEEE),
IEEE Std 610.12-1990(R2002): IEEE Standard Glossary of Software
Engineering Terminology (Reaffirmed 2002) (New York: IEEE,
2002).

8.	 J. Krause, “Semantic Heterogeneity: Comparing New
Semantic Web Approaches with those of Digital Libraries,”
Library Review 57, no. 3 (2008): 235–48.

9.	 T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American 284, no. 5 (2001): 34–43.

10.	 World Wide Web Consortium (W3C), Resource Description
Framework (RDF): Concepts and Abstract Syntax, W3C Recommen-
dation 10 February 2004, http://www.w3.org/TR/rdf-concepts/
(accessed Oct. 5, 2009).

11.	 World Wide Web Consortium (W3C), Web Ontology Lan-
guage (OWL), 2004, http://www.w3.org/2004/OWL (accessed
Oct. 5, 2009).

12.	 World Wide Web Consortium (W3C), SKOS Simple
Knowledge Organization System, 2009, http://www.w3.org/
TR/2009/REC-skos-reference-20090818/ (accessed Oct. 5, 2009).

13.	 M. M. Yee, “Can Bibliographic Data be Put Directly onto
the Semantic Web?” Information Technology & Libraries 28, no. 2
(2009): 55-80.

14.	 L. F. Spiteri, “The Structure and Form of Folksonomy Tags:
The Road to the Public Library Catalog,” Information Technology
& Libraries 26, no. 3 (2007): 13–25.

15.	 Corcho, Fernández-López, and Gómez-Pérez, “Method-
ologies, Tools and Languages for Buildings Ontologies.”

16.	 IEEE, IEEE Std 610.12-1990(R2002).
17.	 N. F. Noy and D. L. McGuinness, “Ontology Develop-

ment 101: A Guide to Creating Your First Ontology,” 2001, Stan-
ford University, http://www-ksl.stanford.edu/people/dlm/
papers/ontology-tutorial-noy-mcguinness.pdf (accessed Sept
10, 2010).

18.	 D. Baader et al., The Description Logic Handbook (Cam-
bridge: Cambridge Univ. Pr., 2003).

19.	 World Wide Web Consortium, DAML+OIL Reference
Description, 2001, http://www.w3.org/TR/daml+oil-reference
(accessed Oct. 5, 2009); W3C, OWL.

