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Abstract: 

In this study we investigated the feasibility of a novel user interface to support the measurement of 
problem-solving processes. Our research questions addressed the use of a “click-through” interface 
to measure the “generate-and-test” problem-solving process for a design problem. A click-through 
interface requires the user to explicitly perform an online action (e.g., to view time, the user has to 
click on a “time” icon). This interface allowed us to measure participants’ intentional acts. Fresh-
man college students were given the task of modifying a given, computer-interactive bicycle pump 
to satisfy performance requirements. The simulation interface provided participants with point-
and-click access to controls to modify pump parameters, to run the simulation, to view important 
information, and to attempt to solve the task. Lag sequential analyses of participants’ problem-solv-
ing processes over time showed cyclical behavior consistent with the generate-and-test strategy of 
modifying the pump design, running the simulation, viewing the information, and then either 
modifying the design or attempting to solve the problem and then modifying the design again. This 
behavior set was remarkably stable, with most lag ı associations greater than .80. Our approach to 
measuring problem-solving processes appears feasible and promising, but more work is needed to 
gather additional validity evidence. 
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An Exploratory Study to Examine the Feasibility 
of Measuring Problem-Solving Processes Using a 
Click-Through Interface

One of the most promising aspects of computer-based assessments is the 
capability to provide students with complex tasks and the flexibility to unob-
trusively measure student learning and problem-solving processes in real-time 
(Baker & Mayer, 1999; Bennett, 1999; Chung & Baker, 2003; Clauser, 2000; Huff 
& Sireci, 2001; National Research Council, 2001). Assessing problem solving typi-
cally involves providing students with the content, asking them to use the informa-
tion in a novel way, and scoring the quality of the response. The cognitive demands 
of the task can range from requiring students to solve a simple problem that has 
a single answer, to requiring students to design solutions to problems that are 
ill-defined and can have multiple solutions. Examples of computer-based problem-
solving tasks include requiring participants to design simple digital circuits (e.g., 
Katz & James, 1998), to find relevant information on the Web to help improve their 
understanding of environmental science given feedback (Schacter, Herl, Chung, 
Dennis, & O’Neil, 1999), and to use data as evidence to successively eliminate can-
didate solutions (Stevens, Ikeda, Casillas, Palacio-Cayetano, & Clyman, 1999).

Most methods of assessing problem-solving skills are based almost exclu-
sively on paper-based formats and focus on outcomes. Outcome performance is 
assumed to be an index of students’ understanding and competence in problem 
solving. However, outcome measures are by definition incomplete measures of 
student learning and understanding because they do not provide direct evidence of 
the kinds of processes students use throughout a task. Even when process data are 
collected, for example by videotaping students while they attempt to solve a prob-
lem, the effort involved is extremely labor-intensive or the data may suffer from 
inaccuracies of self-reporting (e.g., querying students throughout the task; asking 
students to recall what they did during the task). As a result of these difficulties in 
collecting process data, evidence is rarely gathered on the processes that students 
use, during learning and during problem solving, that lead to the observed perfor-
mance. 

Administering problem-solving tasks online is an attractive alternative to 
using paper-based formats for the purpose of measuring problem-solving pro-
cesses (Baker & Mayer, 1999; Baker & O’Neil, 2002; Chung, de Vries, Cheak, 
Stevens, & Bewley, 2002; O’Neil, 1999). The online context provides a testbed to 
observe users’ actions and draw inferences about their problem-solving processes. 
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The value of assessing problem-solving processes is that data on such processes 
can provide evidence of what a learner is doing while carrying out a task. Process 
evidence can be used, for example, to help evaluate the extent to which a task 
evokes expected problem-solving behaviors (e.g., in theory testing), help explain 
performance differences between subgroups (e.g., high and low knowledge indi-
viduals; high and low performers), or aid in task validation (American Educational 
Research Association & American Psychological Association, 1999; National 
Research Council, 2001). Thus, measures of problem-solving processes, when 
used in conjunction with measures of knowledge and problem-solving perfor-
mance, can provide a more comprehensive picture of the learner.

However, two key issues need to be addressed that bear directly on the valid-
ity of inferences drawn about students’ problem-solving processes. The first issue 
is deciding what to measure and at what grain size. Online tasks can be viewed 
as a kind of software testbed, and as such, software sensors can be embedded in 
the online task to gather telemetry about the state of the user at multiple grain 
sizes (e.g., from measuring participants’ individual mouse clicks to measuring 
the number of problems solved). The second issue is related to validity – how is 
the construct of interest measured via software sensors, and how do you know it 
reflects the outcome of substantive cognitive processing?

Current Study
One challenge faced in measuring cognitive processes in online environments 

is that cognitive processes cannot be directly observed. What can be measured are 
the outcomes of cognition (i.e., problem-solving performance measures) and the 
online activity of the participant as he or she carries out the task. In the current 
study, a special user interface was designed and tested, and the main objective of 
the design was to support the direct observation of problem-solving processes. We 
used a multimedia-based simulation authoring system to develop the problem-
solving task. Student responses and student interactions with the simulation were 
continuously logged (Munro et al., 1997; Towne et al., 1990). The cause-effect 
system that was simulated was a bicycle pump, a topic used in previous studies 
(Herl et al., 1999; Mayer & Gallini, 1990). 

Design Problems and the Generate-and-Test Problem-
Solving Strategy 

The approach we took in this study was to examine problem-solving processes 
in the context of a design problem. In a design problem, participants need to devise 
a solution to satisfy a set of constraints. There are usually a number of constraints 
that can vary; thus, there are usually a number of ways to design a solution (Atman, 
Chimka, Bursic, & Nachtmann, 1999; Katz & James, 1998; Mullins, Atman, & 
Shuman, 1999). Participants solving design problems have been observed, via 
think-aloud protocols, to commonly use a generate-and-test strategy (e.g., Katz & 
James, 1998; Nhouyvanisvong & Katz, 1998). 
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In a generate-and-test strategy, the problem solver generates a candidate solu-
tion to the problem, tests whether the solution satisfies the constraints of the 
problem, and if not, generates another solution. Figure ı shows a flowchart of the 
model of the generate-and-test strategy, adopted from Nhouyvanisvong and Katz 
(1998) and updated for the current study.  As displayed in Figure ı, the simulation 
software used in this study permits an additional decision step (i.e., the participant 
can attempt to explicitly solve the design problem).

Figure 1  
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Figure 1. A flowchart of the generate-and-test strategy for the current study.

For example, Katz and James (1998) compared participants’ problem-solving 
strategies used to solve two design problems to problem-solving strategies used 
to solve two analysis problems. Of relevance to the current study are the findings 
for participants solving design problems. In their analysis of participants’ verbal 
protocols, Katz and James observed that participants solving design problems com-
monly used the generate-and-test strategy. In the context of the particular design 
problems (simple digital logic design problems), one problem-solving strategy 
used by participants was to first generate a potential solution, and then mentally 
“run” the circuit by supplying sample input signals and evaluating the output 
signal against the circuit criteria. If the output signal did not match the design 
criteria, the participant would redesign (or regenerate) the circuit and repeat the 
process. 

The findings of Katz and James (1998) are important because they identify 
a set of processes that learners use to solve design problems. In this study we 
attempted to automate the measurement of these processes via measures derived 
from users’ interaction with the user interface.

Click-Through Interface

To facilitate the direct measurement of participants’ problem-solving strategies 
when attempting to solve a design problem, we developed a special “click-through” 
interface for participants. Participants were given access to all relevant information 
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about the design task, but to access the information they had to explicitly click on 
an interface element. For example, the task in this study involved modifying the 
features of a computer-interactive bicycle pump. The user interface made obvious 
to the participant where the information could be seen, but in order to view the 
information the user had to explicitly click on a button and hold the button down 
to view the current value. 

Thus, participants had to click through the interface to see information they 
desired to see, imposing a cost on the user. Our assumption was participants would 
absorb the cost only if they intended to view the information and they judged the 
information to be relevant to helping them solve the problem. Our interface was 
designed for assessment purposes and intentionally sacrificed ease of use for util-
ity of measurement. 

Our research questions for this study were (a) to what extent does the click-
through user interface capture participants’ generate-and-test problem-solving 
processes for a design problem? and (b) to what extent does the click-through user 
interface interfere with participants’ task performance? 

Method

Participants

Participants were recruited from a major university and a community college 
in southern California. While 3ı participants were recruited, 5 participants were 
dropped due to equipment failure and ı was dropped due to task non-compliance. 
The participants were undergraduate freshmen and had participated in a previ-
ous study. Of the remaining 25 participants, there were ı2 males and ı2 females 
(ı participant did not report gender); and 9 Asian American, 6 Latino, 4 White, 
3 biracial, and ı African American participants (2 participants did not report 
ethnicity). The mean high school GPA was 3.86 (SD = 0.40, n = 20), and the mean 
SAT I math and verbal scores were 6ı4 (SD = 78, n = ı6) and 57ı (SD = 95, n = ı6), 
respectively. Participants were also administered a measure of scientific reasoning 
(M = ı2.84, SD = 4.54, N = 25). In general, participants’ self-reported familiarity 
with the content of the simulation was low. The majority of participants reported 
not being familiar with bicycle pumps and having little or no experience with 
mechanical devices. Participants were paid $30 for participating.

Task

Design Task 

The simulation task required participants to solve three pump design prob-
lems. Participants were presented with a “working” computer-interactive pump 
and they were instructed to modify the pump’s diameter and height so that the 
modified pump could inflate a tire to a given pressure within a given time. The 
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pump simulation was designed to simulate the physics of a real pump as closely 
as possible.

The structure of the design task was intended to reflect a prototypical design 
problem: provide performance requirements that the design must satisfy, set con-
straints on the design, and allow participants to bring to bear any processes they 
believe appropriate to solving the problem. This general approach has been used 
in a variety of contexts: evaluating engineering education (Atman et al., 1999; 
Katz & James, 1998; Mullins et al., 1999), assessing design skills in engineering 
(e.g., Katz & James, 1998), and assessing problem solving (e.g., Herl et al., 1999; 
Schacter et al., 1999). Our pilot testing of the pump design task suggested that 
participants did use a generate-and-test strategy.

Our expectation was that performance of the simulation task would be facili-
tated by knowledge of how bicycle pumps operated. However, because the task 
was a design task with specific pump performance requirements, knowledge may 
be insufficient. That is, while previous research has found a strong relationship 
between knowledge of pumps and problem-solving performance (e.g., Herl et al., 
1999; Mayer & Gallini, 1990), the problem-solving task in prior work typically 
required participants to diagnose faults or list possible ways to increase the effi-
ciency of the pump. In our simulation task, participants were asked not only to 
redesign a pump to meet performance criteria, but they could test their design and 
receive feedback on the adequacy of their design. Thus, we expected participants 
to engage in the generate-and-test strategy because the simulation provided both a 
specific pump performance objective and the capability for revision. 

Simulation Interface and Embedded Process Measures

The Virtual Interactive ITS Development Shell (VIVIDS) was the simula-
tion environment used to develop and administer the design problem. VIVIDS 
is an authorable, multimedia simulation environment that can be used for either 
instructional or assessment purposes (Munro et al., 1997; Munro & Pizzini, 1998). 
In VIVIDS, simulations are built by specifying the behavioral rules among inter-
acting components. These behavioral rules govern the operation of the (simulated) 
system and can be used to develop high-fidelity simulations of complex systems. 
The programming facilities within VIVIDS provided the capability to record all 
student interactions with the system as well as the states of all components. 

Pilot Test

We informally pilot tested the usability of the simulation interface with 5 par-
ticipants who were unfamiliar with the content but who were comfortable using 
Graphic User Interfaces. The pilot test yielded no user interface problems. That is, 
we did not observe directly nor did the pilot-test participants report any problems 
with unintentionally clicking on a box, understanding the meaning of the various 
interface elements, or the notion of clicking on an icon to view information.
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Interface Areas

As shown in Figure 2, the interface was divided into six major areas: (a) the 
diagram of the pump, (b) the task information section, (c) the information defini-
tion section, (d) the pump control section, (e) the design section, and (f) the solve 
problem section.  

Pump Diagram

The pump diagram was based on a previous study that involved pumps (Herl 
et al., 1999). The diagram was dynamic in that the piston and valves would operate 
when the pump simulation was run. The purpose for having a dynamic display 
was to visually convey the operation of the pump (e.g., pushing down the piston 
caused the outlet value to open).

Task Information

Task information was presented as a simple statement of what the participant 
was to do: modify the pump to meet ı) the target tire pressure and 2) the target 
time-to-inflation. The purpose of this information was to provide participants with 
the performance requirements for the simulation task. This information was static 
and visible throughout the task. 

Definitions and Pump State Values

As shown in Figure 2, there are shaded boxes next to labels and shaded boxes 
next to open boxes. The open boxes displayed the critical values associated with 
the pump simulation. The labels above the open box described the contents of 
the box (e.g., volume under piston, elapsed pumping time). To see a definition of 
the information, participants could click on the box to the left of the label, and the 
definition would show up in the “DEFINITIONS” section. To see the actual value 
of each pump parameter, participants were required to click on the shaded box to 
the left of the open box, below the label in question, and hold the mouse down. 
Releasing the mouse would mask the value.

The purpose of masking the value information was to provide a way to mea-
sure what the participant intended to view. In the absence of think-aloud proto-
cols or eye-gaze data – both impractical for feasibility reasons – we believed our 
approach would be a simple and effective way to measure what the participant 
intended to view. We assumed because there was a usability cost associated with 
clicking on the button, participants would only click on the button if they intended 
to view the information and they believed the information was relevant or valuable. 
All requests to view information were time stamped and logged.
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Pump Controls

The pump was “run” or simulated using the controls in this section. Par-
ticipants could run the pump with ı stroke or 30 strokes. The Reset Pump button 
zeroed out the pump simulation values and allowed participants to start over. Every 
request to “run” was time stamped and logged.

Design Section

The design section provided participants with a way of modifying the pump 
diameter or height. Clicking on higher numbers increased the dimensions of the 
pump and clicking on lower numbers decreased the dimensions of the pump. 
Changing the dimensions of the pump reset the pump parameter values. Every 
request to modify the pump diameter or height was time stamped and logged.

Solve Problem Section

The solve problem section showed (a) the participant ID in large type size, (b) 
the current problem number out of a maximum of 3, and (c) for the current prob-
lem, the attempt number out of a maximum of 3. Figure 2 shows an example of 
a screen at startup – the participant ID is ı000, the problem number is ı and the 
participant has not made an attempt to solve the problem.

When the participant clicked on the Solve Problem button the solution was 
evaluated given the pump diameter and height values selected in the design sec-
tion. If the design values were adequate to meet the specifications shown in the 
task section, then a pop-up window would appear informing the participant that 
the problem was solved and the participant was advanced automatically to the 
next problem. If the design values were not adequate to meet the performance 
specifications, then a pop-up window would appear informing the solution was 
incorrect, the attempt number would increment by one, and the participant would 
be returned to the simulation task. If the participant attempted to solve a problem 
three times without reaching a solution, the participant would be informed that he 
or she did not solve the problem and would be advanced to the next problem. No 
other feedback was given to the participant.
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Figure 2  

TASK INFORMATION

Modify the pump to meet
these speicifications:

Pressure: 90 psi
Time: 120 sec

When you think you
solved the problem,
click on the red
"Solve Problem"
button.

Time Remaining

min

Volume Under Piston

ml

Pressure in Pump

psi

? DEFINITIONS

PUMP CONTROLS

1 stroke 30 strokes Reset Pump

Elapsed Pumping Time
sec

Number of Strokes

Tire Pressure
psi

Solve
Problem

1000
No. 1
0/3

DESIGN SECTION

Diameter:
1.000 in

Height:
21.2 in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2. An example of the simulation screen image at startup.

Measures

Our overall measurement approach was to gather evidence of knowledge and 
reasoning skills expected to be related to the problem-solving process and perfor-
mance on the simulation task. We expected to find positive relationships between 
performance on our scientific reasoning and two prior knowledge measures and 
performance on the simulation task. Such a finding would support the interpre-
tation that our simulation task was operating as intended (i.e., as a design task). 
Based on existing literature, reasoning and knowledge of pumps were assumed 
to be important variables that would affect participants’ problem-solving perfor-
mance and processing (e.g., Baker & O’Neil, 2002; Baker & Mayer, 1999; Herl et 
al., 1999; Mayer & Wittrock, 1996; O’Neil, 1999). For example, in a prior study 
that used pumps and that was the basis for content used in the simulation, Herl 
et al. found a high correlation (r = .84) between scores of knowledge of pumps 
and performance on problem-solving problems requiring use of knowledge of 
pumps. 
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Background Information

The following information was collected from participants: age, ethnicity, sex, high 
school GPA, and SAT I verbal and math scores. 

Familiarity with bicycle pumps and mechanical systems. To measure level of 
familiarity with bicycle pumps and mechanical systems, two 5-point Likert scale 
questions were administered to participants: (a)  “In general, how familiar are you 
with how bicycle pumps work?”, with anchor points described as ı = “not famil-
iar”, 3 = somewhat familiar, and 5 = very familiar – I already knew the concepts very 
well. To measure background in mechanical devices, participants were asked the 
question: “How extensive is your background in mechanical devices (e.g., pumps, 
cars, etc.)?”, with anchor points described as ı = little or no experience, 3 = somewhat 
extensive, and 5 = very extensive. 

Scientific Reasoning

Lawson’s Classroom Test of Scientific Reasoning (CTSR) (revised 24-item mul-
tiple-choice edition) was used to measure scientific reasoning (Lawson, 1987). Two 
items (questions 2ı and 22) were dropped because of a typographical omission. 
Coefficient alpha was .80 for this measure. The purpose for including the CTSR 
was to gather information on participants’ reasoning, as we presumed the design 
task required reasoning to successfully solve it. 

Prior Knowledge Measure of How Pumps Operate

An online knowledge map was administered to participants to measure their 
knowledge of how pumps work. This measure was administered before the 
simulation task and was intended to provide a baseline measure of students’ 
understanding of pumps. The set of terms (i.e., handle – up, handle – down, piston 
– up, piston – down, inlet valve – open, inlet valve – closed, cylinder – high pressure, 
cylinder – low pressure, outlet valve – open, outlet valve – closed, hose – airflow, hose 
– no airflow) and links (i.e., causes, contributes) and the expert map used for scoring 
participants’ knowledge maps were based on another study (Herl et al., 1999). The 
expert knowledge map was used as the criterion map for scoring purposes. The 
scoring algorithm was based on the method developed by Herl, Baker, and Niemi 
(1996). Briefly, the knowledge map score was the number of propositions in the 
participant map (i.e., concept-relationship-concept) that also existed in the crite-
rion map. Because the student and expert maps were computer-based, the scoring 
was carried out automatically. 

The rationale for measuring participants’ pre-simulation knowledge was to 
gather information on participants’ pre-simulation understanding of how bicycle 
pumps operate. Presumably, participants who knew more about the operation of 
pumps would be more likely to perform higher on the simulation task.
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Prior Knowledge Measure of Pump Principles

A ı2-item multiple-choice test was used to gather information on participants’ 
understanding of the relationships between the design of a pump (i.e., its height 
and width) and stroke time, volume, pressure, and force. An understanding of 
these relationships was assumed to be important to successfully solve the pump 
design problems. We expected that participants who had higher knowledge of 
pump principles also would perform higher on the simulation task. Coefficient 
alpha was .8ı for this measure. 

Simulation Outcome Measures

The three measures of performance on the simulation task were the number 
of problems solved, the number of incorrect solve attempts, and the time taken 
to complete the task. Three simulation problems were developed to measure par-
ticipants’ ability to solve the pump design problems. Participants had a maximum 
of three chances to solve each problem. The first problem was designed to be the 
easiest, and the last problem the hardest. Difficulty was determined by the solution 
range. The more difficult problem had a much narrower range of solutions (i.e., 
fewer height-width combinations). An expert experienced in the design and opera-
tion of pumps designed the problems and solution ranges.

Simulation Online Process Measures

Seventeen events were used for analyses. These events represented the click-
stream activity of participants and are given in Table ı. These events were grouped 
into four event categories: (a) design, (b) run, (c) information, and (d) solve 
attempt. The four categories were intended to reflect the general generate-and-test 
strategy framework. The adequacy of these categories was verified by expert review. 
The expert had extensive engineering experience with the design and operation of 
pumps.
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Table 1 Simulation Events

Type of event Description

Design Clicked on a design button

Run Clicked on 1 stroke button

Clicked on 30 stroke button

Clicked on pump reset button

Information

Definition Viewed time remaining definition

Viewed volume under piston definition

Viewed pressure under piston definition

Viewed elapsed pumping time definition

Viewed number of strokes definition

Viewed tire pressure definition

Value Viewed time remaining value

Viewed volume under piston value

Viewed pressure under piston value

Viewed tire pressure value

Viewed elapsed pumping time value

Viewed number of strokes value

Solve attempt Clicked on solve button

Impact of User Interface Measure

To measure participants’ perceptions of the user interface, three 5-point Likert 
scale questions were administered to participants: 

(a) “In general, how intrusive did you find having to click to see information?”, 
ı = not intrusive, 3 = somewhat intrusive, 5 = very intrusive; 

(b) “How frequently did having to click on the information boxes interfere with 
your performance on the task?” ı = clicking did not interfere with my per-
formance, 3 = clicking interfered with my performance sometimes, 5 = clicking 
interfered with my performance very often; 

(c) “Compared to not having to click to see information, how often did clicking 
for information change your thinking on the task?” ı = clicking for informa-
tion did not change my thinking, 3 = clicking for information changed my think-
ing sometimes, 5 = clicking for information changed my thinking very often.

In addition, participants were asked to respond to the following question in 
an open-ended response: “What effects, if any, did explicitly clicking have on you 
during the computer task? Please describe or check ‘no effects’ if there were no 
effects.”
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Procedure 

Because participants had participated in a previous study, we had available the 
background and scientific reasoning test scores. For the current study, participants 
were first given a diagram of a bicycle pump, with the different parts of the pump 
identified. Next, the pump principles test was administered. Participants were 
given as much time to complete the ı2-item survey as they needed. In general, they 
took about 2 minutes. 

Next, participants were administered the knowledge map task. All participants 
were familiar with the knowledge map software as they had used it in a prior study. 
The knowledge map task was used to depict cause-effect relations among the dif-
ferent pump elements. Participants received instruction and examples on paper. 
These procedures were adopted from Herl et al. (1999). The training on how to 
use the knowledge mapping software took about 5 minutes and participants were 
given ı0 minutes to complete the knowledge map. 

Following the knowledge map task, participants received a diagram depicting 
how bicycle pumps work (Herl et al., 1999). Participants were then shown the sim-
ulation computer interface and given instructions on the task. Participants were 
given 45 minutes to complete the task which included three problems. Following 
the simulation task participants were given 3 minutes to modify their knowledge 
map, followed by a new pump principles test where they were given as much time 
as they needed to complete the test. In general, participants took about 2 minutes 
to complete the test. 

Participants were then administered the familiarity with bicycle pumps 
and mechanical systems measure and the user-interface evaluation measure, 
debriefed, and paid for their time.

Results
The analyses of problem-solving patterns were based on participants’ click-

stream data. Participants’ clickstream data were analyzed using lag sequential 
analyses. The analyses of perceived effects were based on participants’ self-reports 
to survey questions. All statistical tests were two-tailed and the p-value set to .05.

Preliminary Analyses

Prior to analyzing the data, we conducted a preliminary analysis of the pat-
tern of correlations among our measures to determine the degree to which our 
measures were operating as expected. Given the nature of the simulation task – a 
design problem presented to participants with little knowledge of how pumps oper-
ated – we expected to observe correlations among reasoning skills, pump knowl-
edge, and performance on the task. As shown in Table 2, there were no significant 
relationships between the pretests of pump knowledge and performance variables. 
The pattern of correlations among the measures of pump knowledge and scientific 
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reasoning, and between these measures and the outcome measure were not sig-
nificant; thus it is unclear whether there were problems with the measures or the 
simulation task did not require the degree of prior knowledge that we believed at 
first. Some evidence was found that the prior knowledge measures were operating 
as expected. A moderate correlation was found between the pretest pump opera-
tion test score and participants’ self-reported experience with mechanical devices 
(rsp = .35, p = .ı0, n = 23). We speculate that the simulation task did not require the 
depth of background knowledge we initially believed. 

Table 2 Spearman Correlations Between Measures of Prior Knowledge and 
Scientific Reasoning and Task Performance, and Intercorrelations 
Among Measures of Prior Knowledge and Scientific Reasoning 
(N = 25)

Simulation task 
performance

Prior knowledge 
measures

M SD

No. of 
problems 

solveda

No. of 
incorrect 

solve 
attemptsb

Pump 
principles

Pump 
operations

Prior 
knowledge 
measures

Pump 
principlesc 6.76 1.79 .22 -.24 – .17

Pump 
operationsde 2.70 1.82 .39 -.37 .17 –

CTSRf 12.84 4.54 -.04 -.04 .22 .17

a Maximum possible 3. 

b Maximum possible 9. 

c Multiple-choice measure, maximum possible 12. 

d Knowledge map measure, maximum possible 12. 

e n = 23.  

f Multiple-choice measure, maximum possible 22.

* p < .05 (two-tailed).
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Analyses of Participants’ Problem-Solving Processes

Task Performance

Given 45 minutes to solve three problems, 2 participants solved no problems, 
ı0 solved one problem, 5 solved two problems, and 8 solved all three problems. 
Participants’ self-reported perceptions of the difficulty of the task are consistent 
with performance, as shown in Table 3.

Table 3 Number of Problems Solved by Perception of Task Difficulty (N = 25)

In general, how difficult did you find the pump task?a

No. of problems solvedb 1 2 3 4 5 

0 1 1

1 6 4

2 1 1 1 2

3 1 2 4 1

a 1 = Not difficult, 3 = Somewhat difficult, 5 = Very difficult. 
b Maximum possible 3.

The higher participants’ rating of task difficulty, the longer they took to com-
plete the simulation (rsp = .56, p < .0ı, N = 25). These results suggest that while the 
task may have been difficult for many participants, it was also easy to somewhat 
difficult for the majority of participants.  

Table 4 shows the descriptive statistics and intercorrelations for the outcome 
and process measures. In terms of simple counts of behavior (i.e., the number 
of clicks), the most frequently used element of the simulation was the inspection 
of information followed by running the pump simulation and design activity. No 
other interesting relationships were found. 
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Table 4 Descriptive Statistics and Spearman Intercorrelations (N = 25)

Simulation 
outcome measures

Online 
process measures

M SD

No. of 
problems 

solved

No. of 
incorrect 

solve 
attempts Task time Design Run

Infor-
mation

Simulation 
outcome 
measures

No. of problems 
solveda 1.76 1.01

No. of incorrect 
solve attemptsb 4.00 2.80 -.87**

Task time (seconds)c 1913 592 -.48* .33

Online 
process 
measures

Design 90.40 46.67 -.59** .47** .57**

Run 175.40 137.74 -.18 -.31 .30 .22

Information 235.08 99.84 -.22 .10 .71** .62** .38

Solve attempt 5.76 1.96 -.76** .97** .19 .36 -.37 .04

a Maximum possible 3. 
b Maximum possible 9. 
c Maximum possible 2700. 

* p < .05 (two-tailed). 

** p < .01 (two-tailed).

Online Processes

To examine participants’ online problem-solving processes, we conducted a 
sequential analysis of participants’ clickstream behavior with respect to the four 
main event categories listed in Table ı. A sequential analysis takes into account the 
order or sequence of behavior as it unfolds over time. We selected this type of anal-
ysis because our main objective was to measure problem-solving processes—par-
ticipants’ dynamic, moment-to-moment behavior over time (Bakeman & Gottman, 
1997; Bakeman & Quera, 1995; Gottman & Roy, 1990). Sequential analyses have 
been used with a variety of data whose common elements are interaction and time 
(e.g., communication streams, Bowers, Jentsch, Salas, & Braun, 1998; Hirokawa, 
1980; human-computer interaction, Sanderson & Fisher, 1994; marital interac-
tion, Gottman, Markman, & Notarius, 1977).

Participants’ behavior (as measured by the event categories in Table ı) was 
logged and the order of events preserved. For example, using the four major event 
categories (design, run, information, solve attempt), a hypothetical participant’s 
clickstream might be “D R I S …” This sequence of codes represents a participant 
clicking on a design button (D), followed by running the simulation (R), viewing 
a pump parameter (I), and making a solve attempt (S). Sequential analyses can 
quantify the time-dependent dependencies among the behaviors.

To determine the strength of relationship among the behaviors, 2 × 2 contin-
gency tables were constructed for each pair of event types. For each pair of events, 
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the odds ratio was computed. For any 2 × 2 contingency table, rows represent the 
given event (given event occurred, did not occur) and columns represent the target 
event (target event followed given event, did not follow given event), as shown 
below in Figure 3.

Figure 3 

Target event

B not B

Given event
A a b

not A c d

Figure 3. Generic contigency table: strength of relationship between two behaviors, the given event (A) and 
the target event (B), with the cells (a, b, c, d) indicating the number of times that the given event occurring was 
followed by the target event occurring or not occurring.

Cell values represent the count of particular pairs of transitions (e.g., a is the 
number of times event B followed event A). The odds ratio is given as ad/bc and 
ranges from 0 to infinity. For ease of interpretation, Yule’s Q was computed from 
the odds ratio. Yule’s Q is the transformation of the odds ratio and is given as 
[(ad – bc) / (ad + bc)] and ranges from –ı to +ı, where –ı indicates perfect negative 
association, 0 no association, and +ı perfect positive association. Yule’s Q is analo-
gous to a correlation coefficient (Bakeman, McArthur, & Quera, 1996).

Table 5 shows Yule’s Q for lag ı and lag 2 sequences. The given event (lag 0) 
column specifies the behavior of interest, and the target event column specifies 
the event immediately following the given event (lag ı) or two events following the 
given event (lag 2). For example, given that a design event occurred, the likelihood 
of a run event following is very high (.89) while the likelihood of an information 
event following is very low (–.67). 

Figure 4 depicts the order of events. Each node represents one of the major 
events (i.e., design, run, information, or solve attempt) and the arcs show Yule’s Q 
between events. As Figure 4 shows, participants’ behavior was cyclical – design, 
run, information, and then either design or solve attempt and then design. This 
behavior set was remarkably stable, with most lag 1 associations greater than .80. 

Shown in Table 5 but omitted from Figure 4 are the negative associations. 
These associations indicate behavior that occurred far less than expected. For 
example, after running the simulation, participants rarely clicked on the design 
buttons or attempted to solve the problem. Likewise, design activity was rarely fol-
lowed by looking at information. 
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Table 5 Yule’s Q for Lag 1 and Lag 2 Sequences, All Participants (N = 25)

Given event 
(Lag 0)

Target event

Lag 1 Lag 2

Design Run
Infor-

mation
Solve 

attempt Design Run
Infor-

mation
Solve 

attempt

Design  .89 -.67 -.38 -.67 -.79 .88 -.71

Run -.75  .98 -.90 .83 .30 -.98 .77

Information .89 .22  .82 -.70 .24 .30 -.65

Solve attempt .59 -.42 -.22  -.13 .33 -.29 .02

Note. All values of Q are within a 95% confidence interval.

Figure 4 
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Figure 4. Lag 1 and lag 2 transitions (only values of Yule’s Q greater than or equal to .30 are shown). All values 
are within a 95% confidence interval. X indicates any intervening event.

These results suggest that participants’ behaviors were very systematic and 
consistent with the generate-and-test processes observed in previous studies using 
the think-aloud method (i.e., Katz & James, 1998; Nhouyvanisvong & Katz, 1998). 
In particular, we interpret participants’ sequential behavior – their design activity 
(e.g., modifying the pump), followed by running the simulation, viewing pump 
parameter information, then attempting to solve the problem – as behavior indi-
cating that a participant was generating a hypothesis, testing the hypothesis, and 
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then revising the hypothesis. The mapping between sequential behavior and the 
generate-and-test process is shown in Figure 5.

Figure 5 
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Figure 5. Mapping between generate-and-test processes and online sequential behavior

Our results suggest that user-interface events can be used as measures of 
problem-solving processes, particularly if the sequential behavior is taken into 
account. To elaborate, one aspect rarely addressed in studies of problem solving is 
the sequential (or time-dependent) dimension of problem solving. By definition, 
process implies time or sequence. Taking sequence into account yields results 
that describe how a participant’s behavior unfolds over time. For example, the 
correlations among the online process measures show a significant relationship 
between design activity and information events (see Table 4); not much more 
can be inferred. However, the complementary information shown in Table 5 and 
Figure 4 describes the nature of the relationship – design events are less likely to 
be followed by information events than solve attempts. Further, this relationship 
is asymmetrical; both information and solve attempt events are very likely to be 
followed by design events. Finally, the sequential pattern shown in Figure 4 and 
summarized in Figure 5 captures the notion of process as a time-dependent phe-
nomena that cannot be inferred from simple correlations as shown in Table 4.
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Analyses of Interface Effects

To determine interface effects we asked participants their perceptions of the 
effects of the click-through interface. Table 6 shows the user interface evaluation 
questions and distribution of participants’ responses. Most of the participants 
reported that the interface had some effect on them in terms of intrusiveness or 
interference on the task; 6 participants reported no effects at all, 3 reported the 
interface as being very intrusive, and 6 reported the interface to have interfered 
with task performance very frequently.

Table 6 User Interface Evaluation (N = 25)

Response

Question 1 2 3 4 5

In general, how intrusive did you find having to click 
to see information?a 6 3 12 2 2

How frequently did having to click on the information 
boxes interfere with your performance on the task?b 6 2 10 2 5

Compared to not having to click to see information, 
how often did clicking for information change your 
thinking on the task?c

5 4 6 8 2

a 1 = Not intrusive, 3 = Somewhat intrusive, 5 = Very intrusive. 

b 1 = Clicking did not interfere with my performance, 3 = Clicking interfered with my performance sometimes, 
5 = Clicking interfered with my performance very often. 

c 1 = Clicking for information did not change my thinking, 3 = Clicking for information changed my thinking 
sometimes, 5 = Clicking for information changed my thinking very often.

When participants were asked if the interface changed their thinking on the 
task, the responses were evenly distributed. Of the 25 participants, ı5 participants 
reported that the interface changed their thinking sometimes or less, while 2 
reported that the interface changed their thinking very often. The remaining 8 
participants reported the interface changed their thinking between sometimes 
and very often. Participants who reported the interface as intrusive also tended to 
report the interface as interfering with task performance (rsp = .62, p < .0ı, N = 25) 
and had a higher perception of the difficulty of the task (rsp = .62, p < .0ı, N = 25). 
In terms of performance, the more participants reported the interface as intrusive, 
the lower the number of problems they solved (rsp = -.58, p < .0ı, N = 25), the more 
incorrect solve attempts they made (rsp = .46, p < .05, N = 25), and the longer they 
took to complete the task (rsp = .42, p < .05, N = 25). Interestingly, there were no 
significant relationships between participant reports of how much the user inter-
face interfered with their thinking and any of the task performance measures, the 
self-reported intrusiveness of the user interface, or the self-reported intrusiveness 
of the interface on task performance.
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When participants were asked to describe the effects the interface had on 
them, 9 participants reported no effects. The remainder of participants responded 
in writing, and their responses were classified into three categories – (a) slow down 
on task, (b) negative impact on the task performance, and (c) positive impact on 
task performance. Two responses were not classified. 

Finally, when task performance and participants’ self-reports of the interface 
are considered together, the pattern of correlations suggest a possible cognitive 
load effect (Sweller, 1994). That is, participants who reported the user interface as 
being intrusive also performed more poorly on the simulation task. 

This finding, while tentative, is consistent with the general idea of the mediat-
ing role of prior knowledge on problem-solving performance (e.g., Mayer, 2001; 
O’Neil, 1999). We speculate that for participants with low prior knowledge, the 
joint effects of (a) a novel content area; (b) the task demand to determine the causal 
relationships among the pump’s diameter, width, volume, and pressure; and (c) an 
unusual interface that taxed working memory by hiding critical status information, 
may have imposed too severe a processing load on low-knowledge participants. 
However, note that we are speculating about the presence of a cognitive load effect, 
as we did not observe any significant relationships between our prior knowledge 
measures and task performance measures.

Discussion
This study examined a novel user-interface technique to explicitly measure 

participants’ problem-solving processes. We found strong evidence of a sequential 
structure to participants’ behavior, consistent with a generate-and-test strategy. 
Participants’ problem-solving processes were strikingly consistent: (a) design 
activity, (b) run the simulation, (c) check the information, and (d) back to design or 
solve attempt and then back to design.

Limitations and Next Steps of This Work 

Our approach of requiring participants to explicitly click on a button to view 
important information appeared successful; however, over half of the sample 
reported that the interface was intrusive or it interfered with the task in some way. 
Despite these self-reports, participants were able to engage in the task and there 
was no relationship between participants self-reports of the frequency of the inter-
face changing their thinking, and the measures of intrusiveness of the interface 
or task performance. Thus, while participants’ reported the interface as intrusive, 
it is unclear to what extent their performance was affected by the interface. Future 
research should investigate this issue in more depth (Bennett & Bejar, 1998).

A general limitation of this work is that it is confined to describing the prob-
lem-solving processes of a particular sample using a particular online task. The 
study lacked a comparison group or groups. While the results of this study suggest 
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that the general approach is promising, future research should address the follow-
ing issues:

• Compare performance on the click-through interface to performance on 
a non-click-through interface. One outstanding issue is to what extent 
does the interface interfere with task performance. Such a condition 
can provide information on the impact of the click-through interface 
on task performance (i.e., number of problems solved; number of 
solve attempts), efficiency (performance per unit time), and click rate 
(number of clicks on both the design and simulation buttons). 

• Comparisons of the sequential aspects of participants’ problem-solving 
processes should be compared for different sub-groups. For example, 
three needed comparisons are between (a) low- and high-domain 
knowledge participants, (b) low- and high-task-performing participants, 
and (c) low- and high-reasoning participants. These comparisons flow 
directly from theoretical considerations of the factors that influence 
problem-solving performance (see Mayer and Wittrock [1996] and 
O’Neil [1999] for a discussion). Detection of problem-solving process 
differences, as measured by the sequence of behaviors, between par-
ticipants in the various conditions would bolster the argument that our 
approach supports the measurement of problem-solving processes. 

Implications for Online Assessment

The significance of this work lies in three areas. First, we have tested a low-cost 
methodology to capture participants’ overt behavior that went well beyond captur-
ing arbitrary keystrokes and clicks. The technique we used was to make obvious 
the availability of important information and elements of the task, but provide that 
access at a cost – participants had to explicitly click on a button. Our reasoning was 
that participants would not engage in such (costly) activity unless they perceived a 
need for the information; thus, we assumed participant clicks represented cogni-
tively meaningful behavior. Current means of capturing process data are expensive 
in terms of time and effort (e.g., behavioral observations, think-aloud protocols). 

The second implication of the work is that we have empirical support, 
although exploratory, of the quantification of problem-solving processes from 
clickstream data, and the corresponding statistical support for the intuitive notion 
that sequential dependencies exist in participants’ problem-solving strategies. We 
adopted a methodology that is routinely used in behavioral observation research 
(e.g., see Bakeman & Gottman, 1997) and have applied it to characterize online 
problem-solving behavior. The utility of this approach is that it allows us to exam-
ine the processes underlying performance. This study represents an early step 
toward developing a methodology and analysis approach that can take advantage 
of clickstream data. 

Finally, the third area this study contributes to is that when considered in the 
context of prior work (e.g., Chung et al., 2002; Chung, Kim, de Vries, & Phan, 
2003; O’Neil, Chuang, & Chung, in press), the current study provides another 
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example of how clickstream data can be used to infer cognitive processes. The cur-
rent study followed up on the idea first presented in Chung et al. (2002) that mean-
ingful information can be extracted from the user interface to the extent that the 
interface supports the unambiguous capturing of intentional acts. In the current 
study, how to run the simulation was visible and obvious to the participant, and its 
use was inferred as an intentional act. Similarly, the information presented to the 
participant was unambiguous. Each piece of information could only be viewed via 
a mouse click and only a single piece of information was presented at a time (vs. 
multiple pieces of information); thus, we assumed there was little doubt about what 
the participant was viewing. These are important features because presumably, the 
act of clicking reflects the result of participants’ reasoning and judgment. 

Implications for Online Instruction

One of the most promising aspects of online delivery of tasks is that the infor-
mation gathered about the student from the student’s interaction with the task 
itself has the potential to individualize instruction. While this idea is not new, what 
is new is that our understanding of what to do with the data is much more sophis-
ticated. For example, when interpreting the meaning of the click, the usefulness of 
the click – the reasonable inferences that can be drawn – is increased substantially 
when the set of cognitive demands behind the click is clear (e.g., Chung, et al., 
2002, 2003; O’Neil et al., in press). Thus, one immediate instructional application 
of the general approach tested in this study would be to compare individual stu-
dent processes against one or more criterion processes, and provide individualized 
feedback to the student. For example, if a task has a range of sequences that could 
be characterized in terms of degree of optimality or correctness, then feedback on 
the extent an individual student’s problem-solving process compared to a criterion 
process could easily be administered. 

A more long-term application of higher instructional utility would be to use 
the clickstream data as a way to link assessment and instruction in real-time. That 
is, inferences about student problem-solving processes could be summarized 
across students or reported at the individual student level and provided back to 
the instructor as the student engages in the online task. We are currently pilot testing 
the utility of such feedback for instructors, although the feedback on student per-
formance is in the form of individual student typed responses (via an anonymous 
chat-like interface) to electrical engineering circuit problems (Ainsworth, Guidry, 
Chung, Delacruz, & Kaiser, 2003). One key insight of this work is that student pro-
cess data obtained via the anonymous chat interface – in the form of intermediate 
solutions to problems and questions to the instructor – provide far more useful 
information (compared to a traditional face-to-face classroom setting), and this 
information can be acted on instructionally in real-time. We expect a similar kind 
of utility from clickstream data to the extent the clickstream data accurately reflect 
the outcome of substantial cognitive processing.

As more problem-solving tasks are delivered online, the use of clickstream data 
will become increasingly important as one source of data. Online problem-solving 
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tasks are essentially software driven. Consequently, embedding measures of prob-
lem-solving processes in the task becomes a matter of defining and programming 
appropriate software sensors. However, our confidence in the interpretation of stu-
dent telemetry is improved markedly when the clickstream data accurately reflect 
the participant’s intention and are the outcome of meaningful cognitive events.
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