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in the face of increasingly large computational demands and the impending halt to 

moore’s law, the semiconductor industry has been forced to re-evaluate the tradi-

tional computing paradigm. central to this re-evaluation has been the novel devel-

opment of neuromorphic computing–an approach that, at its core, seeks to replicate 

the brain in silicon. despite challenges on the algorithmic front, neuromorphic

computing promises a massively parallel, efficient, and scalable computational solu-

tion with large implications on the daily lives of consumers. the future of the tech-

nology, however, is uncertain. with the rise of high performance and quantum com-

puting as promising alternatives, the semiconductor industry at large must consider 

the extent to which neuromorphic computing can emerge as a viable and feasible

solution in the coming years. it is vital, therefore, to understand the theoretical 

underpinnings of the neuromorphic approach and predict the likelihood of its im-

plementation within the next decade.

neuromorphic computing
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ed on the algorithmic front. In terms of research and re-
sources, in October of 2020, Intel announced a three-year 
contract with Sandia National Laboratories (a government 
nuclear research lab) to advance neuromorphic computing 
beyond edge applications to progressively complex compu-
tational problems. The result will be the development of 
increasingly large neuromorphic systems with the intent 
of integrating over one billion neurons. Creating a system 
with such neural capacity exhibits moderate uncertainty in 
the short-term. Given a) the progress Intel has made when 
it comes to scaling Loihi and b) the difficulty of integrating 
an increasingly large number of neurons, the project has 
an uncertainty factor of around two on the low- and high-
end (i.e., the system will be developed within one half to 
two times the expected implementation time frame). Neu-
romorphic computing will also experience strong research 
in edge applications (particularly energy efficient robotics) 
as members of the INRC continue to deploy Loihi in real-
time audio and video processing tests.11

While Gartner predicts that traditional computing will hit 
a wall in 2025 (specifically mentioning neuromorphic 
computing as the leading technology for a shift in the com-
puting paradigm), it is unlikely that a robust commercial 
product will be available within the next five years due to 
software limitations. Unlike traditional ANNs, SNNs lack 
a learning algorithm when it comes to parameter optimi-
zation: it is impossible to use gradient descent given the 
non-differentiable nature of spiking neurons (Soni).12 
Yann LeCun, the head of AI at Facebook, is a leading skep-
tic when it comes to neuromorphic implementation, writ-
ing that it is “premature to build a chip” when SNNs face a 
fundamental training challenge.13 There is also skepticism 
regarding the performance of the underlying SNNs; spe-
cifically, skeptics point to the fact that SNNs do not outper-
form ANNs (e.g. Convolutional Neural Networks) when it 
comes to traditional tests of image recognition (Pfeiffer 
and Pfeil).14

Medium Term (5-10 Years)

While SNNs currently face learning challenges, it is 
expected that within the next five to ten years, researchers 
will develop novel and efficient approaches to SNN 
training. Current advancements have largely been focused 
on implementing a form of transfer learning (i.e., a process 
by which parameters are optimized in one “place” and 
transferred to a new “place”). In March of 2019, Terry 
Sejnowski of The Salk Institute of La Jolla and his team 
were able to train a standard recurrent neural network 
(RNN) via gradient descent methods and transfer the 

learned parameters to an SNN (Tiernan, “Neuromorphic 
computing finds new life”). While parameter transferring 
is a step in the right direction, Sejnowski admits that the 
next step—learning the SNN itself—is still “in the early 
days,” but that there is “going to be another big shift, which 
will probably occur within the next five to ten years.” Given 
both the difficulty and current progress of SNN training, 
there is moderate uncertainty regarding how quickly 
development will occur on the algorithmic front, with a 
general uncertainty factor of one and one-half to two times 
on the high-end. If an efficient learning rule is established, 
it is possible we will begin to see commercially viable 
neuromorphic chips within the decade, allowing for 
complex, energy efficient tasks on the “edge” (e.g., 
smartphones). Such commercial implementation, 
however, is highly dependent on the economic feasibility 
of widespread production, an aspect of neuromorphic chip 
development that is still in its infancy. 

Long Term (10+ Years) 

Although the future of SNN training and the economic 
practicality of neuromorphic hardware is uncertain in the 
near-term, it is possible that beyond 2030 we begin to wit-
ness a shift in the current computing paradigm. Such a 
shift would be characterized by the wide-spread use of 
neuromorphic chips in energy-constrained edge devices 
(e.g., mobile devices, computers, robotics, etc.). Sejnowski 
predicts that once the software is developed and the hard-
ware is “sufficiently cheap,” the implementation of such 
chips will be “ubiquitous...like sensors in phones.” Abu 
Sebastian, Principal Research Staff Member at IBM Zu-
rich, predicts that neuromorphic computing will play a vi-
tal role in the future feasibility of autonomous vehicles, 
making the point that you cannot “collect a frame, pass it 

artificial synapses based on ferro-electric tunnel 
junctions (courtesy of wikimedia commons)
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through to a deep neural net, and wait for the response 
when you’re traveling down a freeway at 70 miles an hour” 
(Greengard). The long-term draw of neuromorphic com-
puting, is energy-efficient, on-board processing that is ap-
plicable to a wide range of technologies, from autonomous 
vehicles to independently operating interstellar spacecraft. 
Neuromorphic chips are also poised to play a large role in 
future medical devices and artificial body parts that can 
benefit from increasingly fast, on-site processing.

While neuromorphic architecture could become ubiqui-
tous beyond 2030, it is important to note the false dichoto-
my between standard computer architecture and neuro-
morphic hardware.15 The promise of neuromorphic chips 
lies in the creation of an adaptive system capable of the 
efficient processing of highly noisy, increasingly complex, 
spatio-temporal data, not the high-speed processing of pre-
dictable, deterministic processes (Greengard). It is short-
sighted, therefore, to view neuromorphic computing as a 
fundamental alternative to traditional computing: the two 
technologies are complementary to each other, excelling in 
tasks suited to their specific design. It is also important to 
note the uncertainty surrounding the long-term ubiquity 
of neuromorphic computing, namely, that there is a three-
way race between neuromorphic computing, high perfor-
mance computing, and quantum computing (Vorhies).16 
Given the advancements of competing fields, it is possible 
the technology is outperformed before it is commercially 
viable (either by existing competitors or a novel approach 
yet to be developed). The future of computing, then, is 
largely undecided, with the only certainty being that our 
current computing paradigm will shift in response to the 
impending halt to Gordon Moore’s 1965 prediction. 

IMPLICATIONS

Consumers and AI Integration

Despite uncertainties regarding the path of computing, a 
future characterized by the widespread adoption of neuro-
morphic technology would have significant implications 
on the way consumers interact with digital devices. Peter 
Suma, co-CEO of Applied Brain Research, imagines a 
world in which neuromorphic technology enables an ex-

treme integration of artificial intelligence into our daily 
lives (Ferry). Suma describes a future in which a technol-
ogy like Siri transcends basic voice commands (i.e., a Siri 
that listens and sees all of your conversations and interac-
tions). If you were to ask Siri what idea your friend Melissa 
came up with regarding your wife’s birthday gift, the effi-
cient, continuous, on-board processing of data made pos-
sible by neuromorphic computing would enable Siri to re-
call the conversation with your friend the week prior, 
bringing up both the idea and a variety of similar, person-
alized ideas. The salient point in Suma’s eyes is that the 
efficiency of neuromorphic chips would enable the local 
storage of information, resolving widespread privacy con-
cerns regarding consumer data. From autonomous vehi-
cles to smart homes and edge devices, Suma’s point is 
clear: the promise of neuromorphic technology is a future 
characterized by the extreme integration of artificial intel-
ligence into our daily lives.

Semiconductor Industry

Research scientist at Hewlett Packard Enterprise, Suhas 
Kumar, summarizes the state of computing as a “huge 
rush to find something” that can continue the improve-
ment in computer science that we have witnessed the past 
half century. Semiconductor manufacturers, therefore, are 
faced with a critical choice of whether to invest in risky 
chip research to compete in a future characterized by ad-
vanced computing technologies. While IBM has seen suc-
cess with its TrueNorth system, Intel has exhibited the 
strongest commitment to neuromorphic research, evi-
denced by its continued progress in creating increasingly 
scalable neuromorphic systems. Intel’s competitors are 
also faced with the challenge of determining the type of 
research they wish to undertake (i.e., whether they believe 
high performance or quantum computing will ultimately 
outperform the neuromorphic approach). Regardless, the 
challenge is clear: the computing industry will witness a 
shift in the coming decades, and the companies that lead 
this shift will capitalize on the widespread adoption of 
their novel technology. 

“The promise of neuromorphic chips lies in the cration of 
an adaptive system capable of the efficient processing of 

highly noisy, increasingly complex, spatio-temporal data”
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Large Technology Firms

Beyond the semiconductor industry, large technology 
companies (e.g., Google, Facebook, Amazon, etc.) are 
faced with the decision to embark upon internal research 
regarding computing hardware. As deep learning process-
es continue to surpass the capabilities of existing technol-
ogy, companies with large workloads and available capital 
are faced with the decision of whether to invest internally 
in chip development. In February of 2019, Facebook’s 
Yann LeCun briefly described “internal activities” the firm 
was taking to address the growing computational divide, 
referencing Google’s Tensor Processing Unit as another 
example of the type of internal efforts large technology 
firms are capable of taking (Tiernan, “Facebook’s Yann Le-
Cun”). While the future is uncertain, it is clear there is a 
demand for change, and the feasibility of neuromorphic 
hardware should figure prominently in the minds of firm 
leaders who are considering undertaking or continuing in-
ternal development activities.

CONCLUSION

From computer science and biology to mathematics, phys-
ics, and electrical engineering, neuromorphic computing 
is a cross-disciplinary challenge that requires a fundamen-
tal rethinking of the way computers operate. Neuromor-
phic research, however, is progressing: firms like Intel are 
leading the charge in chip development, and the success of 
their efforts will have large-scale implications on consum-
ers, the semiconductor industry, and technology firms 
alike. It is vital, therefore, that business leaders consider 
the possibilities and threats of this novel technology, un-
derstanding that the future computing paradigm will be 
decided by innovative firms who are rethinking current 
processes.

endnotes
1. The term neuromorphic means “taking the form of the brain” 
(Fulton III). Intel (a leader in neuromorphic research) summa-
rizes neuromorphic technology as “chips that function less like 
traditional computers and more like the human brain” (“Intel 
Newsroom–Neuromorphic Computing”).

2. It can be argued that the original notion of neuromorphic 
computing was first proposed in Alan Turing’s 1948 paper, Intel-
ligent Machinery. However, the concept is typically attributed to 
Carver Mead’s 1989 Analog VLSI and Neural Systems, a paper 
in which Mead argued that chips with an increasingly dense col-
lection of transistors could best communicate via a replication of 

the brain’s neural wiring.

3. The downside of traditional computer architecture is typically 
referred to as the von Neumann bottleneck—the notion that 
despite increases in processing speed, processors are forced to 
remain idle while data is transferred to and from the memory of 
a chip, resulting in increased latency.

4. Neuromorphic chips employ analog circuitry to transfer elec-
trical signals between “neurons.” The idea is that the system will 
be able to modulate the amount of electricity flowing between 
nodes, mimicking the fact that brain signals naturally have vary-
ing degrees of strength.

5. A key emphasis of neuromorphic computing is the selective 
mapping of neural connections. In order to operate at maximum 
efficiency, the brain uses only the specific neurons and synapses 
necessary to perform a given task. Neuromorphic systems, 
therefore, seek to emulate this efficiency by strategically and 
selectively forming connections between neighboring neurons.

6. Each “spike” in an SNN is a single-bit impulse that is analo-
gous to an action potential in a naturally occurring neuron. A 
given node in the network is capable of spiking only if a state 
variable exceeds a given threshold.

7. In fully-connected ANNs, all nodes compute and send their 
output to the next layer at each time step, even if nothing has sig-
nificantly changed, making the overall network computationally 
expensive. Conversely, SNNs employ neurons that process input 
separately and are only connected to local neighbors, implying 
that the entire layer does not need to be calculated for informa-
tion to proceed to the next layer.

8. In 1965 Intel’s co-founder Gordon Moore predicted that the 
number of transistors that could be placed on an integrated 
circuit would double every two years while costs remain constant 
/ decline.  

9. Loihi comprises 128 neuromorphic cores, 131,000 “neurons”, 
and 130 million “synapses” (connections). The chip is named 
after an active submarine volcano off the coast of Hawaii that is 
set to emerge one day. The idea is that neuromorphic computing 
is analogously “emerging” and will eventually break the “surface” 
of the current computing environment.

10. In December 2018 Intel announced the creation of Kapoho 
Bay, Intel’s smallest neuromorphic system consisting of two 
Loihi chips. In July of 2019 Intel was able to scale Loihi into their 
64-chip Pohoiki Beach, representing the neural capacity of 8 mil-
lion neurons. Most recently, Intel debuted its 768-chip Pohoiki 
Springs with a collective neural capacity of 100 million neurons. 
The chips reside in a chassis the size of five standard servers 
and is provided to members of the Intel Neuromorphic Research 
Community via a cloud-based system. Intel hopes it will emerge 
as a “tool for researchers to develop and characterize new neuro-
inspired algorithms for real-time processing, problem solving, 
adaptation and learning” (“Intel Newsroom–Pohoiki Springs”).

11. In July of 2020 the National University of Singapore ran an 
event-driven, visual-tactile perception test on Intel’s Loihi chip 
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as well as various GPU systems to compare power consump-
tion (Russel). The Loihi test chip slightly outperformed the GPU 
systems (in inferences per second) at significantly lower power 
consumption.

It is important to note that Loihi’s strong performance is largely 
the result of the entire system (in this case, robotic sensors, data 
formats, algorithms, and the Loihi architecture) being “re-engi-
neered in an event-based paradigm” (Mike Davies, Director of 
Neuromorphic Research at Intel. See Russel). Put simply, when 
the system is consistent with Loihi’s event-based architecture, 
neuromorphic hardware outperforms traditional GPU’s when it 
comes to energy efficiency.

12. Existing deep learning algorithms depend on stochastic 
gradient descent and error backpropagation to efficiently “learn” 
a given ANN. Since SNNs operate in discontinuous, non-differ-
entiable spikes, it is impossible to apply existing learning rules 
directly to SNN training (Pfeiffer and Pfeil).

13. At the 2019 International Solid State Circuits Conference in 
San Francisco, LeCun heavily criticized neuromorphic comput-
ing in his opening keynote address. While Intel’s Mike Davies 
agrees that there is a lot of progress to be made on the algorith-
mic front, which he claims is “holding back the field,” Yann’s 
criticism resulted in a fireback from Davies citing the efficacy of 
neuromorphic chips in a December report produced by Applied 
Brain Research of Waterloo, Ontario. Davies’s fireback was met 
with a detailed Facebook post by LeCun outlining the issues he 
sees with neuromorphic hardware, specifically citing the lack of 
an efficient training algorithm.

14. It is important to point out that SNNs are not optimized for 
performance on existing AI Benchmarks (e.g., ImageNet). Just 
how the brain is not optimized (but capable of) classifying an 
image that is quickly flashed on the retina, SNNs struggle with 
the typical frame-based test of software accuracy. The evaluation 
of SNNs, therefore, requires benchmark testing that emphasizes 
the functionality of spiking networks—i.e., “making decisions 
based on continuous input streams while moving in the real 
world” (Pfeiffer and Pfeil).

15. Dan Hutcheson, CEO of VLSI Research (an independent 
market analysis and consulting firm that tracks the semiconduc-
tor industry), describes the false dichotomy as follows: “Today’s 
computers are very good at what they do. They will continue to 
outperform neuromorphic computing systems for conventional 
processing tasks. The technologies are complementary and so 
they will coexist.” Adam Stieg, associate director of the California 

NanoSystems Institute at the University of California at Los An-
geles, further describes how “conventional von Neumann-based 
computing systems” perform very well with “high-speed, pre-
dictable, deterministic processes,” but struggle with increasing 
complexity. The promise of neuromorphic computing, therefore, 
is the opening up of “an entirely new and unexplored area of 
computing”—one that allows us to “do things with computers 
that we couldn’t have imagined in the past” (See Greengard).

16. High-performance computing (HPC) can be generalized as 
a process of optimizing chip architecture for existing deep learn-
ing algorithms (Vorhies). The majority of attention is currently 
placed on HPC, with large technology firms beginning to enter 
the chip manufacturing field by developing their own propri-
etary chips (e.g., Google’s Tensor Processing Unit) (Tiernan, 
“Facebook’s Yann LeCun”). Conversely, quantum computing is 
analogous to neuromorphic computing in that it represents a 
rethinking of existing computer architecture. Rather than operat-
ing in bits (0 or 1), quantum computing employs quantum bits 
(qubits) that can be set to 0, 1, or both simultaneously (Cho). 
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