
In this paper, we discuss strings of 3’s and 7’s, hereby dubbed “dreibens.” As a first step 

towards determining whether the set of prime dreibens is infinite, we examine the 

properties of dreibens when divided by 7. by determining the divisibility of a dreiben 

by 7, we can rule out some composite dreibens in the search for prime dreibens. We are 

concerned with the number of dreibens of length n that leave a remainder i when 

divided by 7. By using number theory, linear algebra, and abstract algebra, we arrive 

at a formula that tells us how many dreibens of length n are divisible by 7. We also 

find a way to determine the number of dreibens of length n that leave a remainder i 

when divided by 7. Further investigation from a combinatorial perspective provides 

additional insight into the properties of dreibens when divided by 7. Overall, this 

paper helps characterize dreibens, opens up more paths of inquiry into the nature of 

dreibens, and rules out some composite dreibens from a prime dreiben search.
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Introduction to dreibens and the 
search for infinitely many prime 
dreibens
The existence of infinitely many prime numbers is an ele-
mentary fact of number theory. However, mathematicians 
continue to ponder over whether there are infinitely many 
primes of a certain kind. For instance, it is not yet known 
whether or not the set of Mersenne primes is finite or 
infinite. Evidently, questions about primes remain at the 
forefront of number theory. 

Our current research focuses on a type of number that we 
dubbed dreibens. Dreibens are merely strings of 3s and 7s 
(e.g. 333, 777, 3377373737, etc.), yet these simple strings pro-
vide a foundation for a multitude of questions. Our ulti-
mate goal is to prove whether or not infinitely many prime 
dreibens exist. While that question is beyond the scope of 
this paper, this paper contributes to that goal by ruling out 
some composite dreibens. In fact, this paper concerns it-
self with dreibens divisible by 7; by understanding dreibens 
modulo 7, we can rule out some dreibens that are certainly 
not prime. 

This paper uses a variety of approaches to learn about 
dreibens modulo 7, including techniques from number 
theory, abstract algebra, linear algebra, and combinatorics. 
With time, we hope dreibens to one day become a very well 
characterized type of number.

learning about dreibens modulo 7 by ex-
ploring Ai

7(n)
We would best approach dreibens by attempting to nd the 
number of dreibens divisible by some number. For this 
paper, we interest ourselves in the number of dreibens di-
visible by 7. Let us define Ai

j(n) as the number 1 of dreibens 
of length n that leave a remainder i when divided by j. In 
this paper, we will concern ourselves with Ai

7(n).

How do we find Ai
7(n + 1)? We can find formulas for Ai

7(n + 
1) by considering the first n digits of a dreiben of length n 
+ 1, then seeing what the last digit must be such that the 
dreiben leaves a remainder i when divided by 7. Let us con-
sider a dreiben Dn+1 of length n + 1, which could leave a 
remainder of 0, 1, 2, 3, 4, 5, or 6 when divided by 7. The rst 
n digits of Dn+1 form another dreiben Dn that could leave a 
remainder of 0, 1, 2, 3, 4, 5, or 6 when divided by 7. Hence, 
we have seven cases, each with seven sub-cases, which we 
must consider. We will write the rst three cases below.
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Notice that in Case 1, Dn+1 covers all possible dreibens of 
length n + 1 divisible by 7. Likewise, Case 2 covers all pos-
sible dreibens of length n + 1 that are 1 (mod 7), Case 3 
covers all possible dreibens of length n + 1 that are 2 (mod 
7), and so forth. Similarly, each subcase (a) covers all pos-
sible dreibens of length n divisible by 7, each subcase (b) 
covers all possible dreibens of length n that are 1 (mod 7), 
and so forth. Hence, each case represents Ai

7(n + 1) for 
some i and each sub-case represents Ai

7(n) for some i. 
From these cases, we get the following formulas for Ai

7(n + 

1) in terms of Ai
7(n):

We can rewrite this linear system in terms of matrices. Let

The aforementioned linear system is the same as

By induction, we find that

This linear system allows us to quickly find the number of 
dreibens of length n that leave a remainder i when divided 
by 7. We need only calculate the following:

Let us investigate An to see if we nd anything interesting. 
Evidently:

Let

so A = B + C.

"We can find formulas for Ai
7(n + 1) by considering the 

first n digits of a dreiben of length n + 1, then seeing 
what the last digit must be such that the dreiben leaves a 

remainder i when divided by 7." 91
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If we look at the powers of B and C, we find that

Notice how for i = 0 (mod 6), both Bi and Ci are equal to the 
identity matrix I7. Both the powers of B and C are cyclic 
groups of order 6.

Before examining An, let us define the following:

These formulas will be useful for condensing our notation.

Now we can finally begin examining An:

Now we have

The problem with the above equation is that we still have 
the powers of B in terms of n. However, we can easily solve 
this problem because the powers of B form a cyclic group. 
Since this cyclic group has order 6, we must consider six 
cases.
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Evidently, no matter what n is, the first row of the matrix An 
is always

Recall that

If we want to find A0
7(n + 1), i.e. the first entry of →vn+1, we 

need only consider the first row of An:

Now we have a formula with which to find the number of 
dreibens of length n that are divisible by 7:

What if we want to find any Ai
7(n), i = 0, 1, 2, 3, 4, 5, 6? We 

know that these Ai
7(n) are entries of →vn. Recall that

To solve for →vn+1, we must first understand An. Recall that

As it turns out, A is a diagonalizable matrix, so An is also 
diagonalizable:

Interestingly, some entries of D are 6th roots of unity. If 
we let  be the jth ith-root of unity, then
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Recall that the nth roots of unity form a cyclic group of or-
der n, as in Table 1 below:

Based on the properties of the 6th roots of unity, we find 
that

Now that we understand Dn, we are much closer to charac-
terizing An. All we need to do is to calculate PDnP-1 for each 
case of Dn. Below, we will calculate the first case, i.e. where 
n ≡ 0 (mod 6).

If n ≡ 0 (mod 6),

Where n ≡ 0 (mod 6), the entries of An are all either 
1/7(2n – 1) or 1/7(2n + 6). Hence, An can be much more eas-
ily calculated; instead of performing lengthy matrix power 
operations, one can merely find 1/7(2n - 1) and 1/7(2n + 6) to 
determine An. Since →vn = An-1→v1, one can now easily deter-
mine any Ai

7(n) where n ≡ 0 (mod 6). In other words, one 
can easily determine the number of dreibens of length n ≡ 0 
(mod 6) that leave remainder i when divided by 7. By exten-
sion, one can determine the number of dreibens of length 
n ≡ 0 (mod 6) divisible by 7; all of these dreibens are neces-
sarily composite, so they can be ruled out during our 
search for infinitely many prime dreibens. 

We can perform similar calculations for An where n ≡ 1, 2, 
3, 4, 5 (mod 6), thereby allowing us to quickly find An for 
any n. Hence, we can easily determine An for any n, allow-
ing us to rule out many composite dreibens.

Combinatorial approach to dreibens 
modulo 7
Let us take a combinatorial approach to Ai

7(n). For now, let 
us restrict ourselves to A0

7(n); in other words, we are look-
ing for when a dreiben of length n is divisible by 7. These 
dreibens are obviously composite, so learning to identify 
them will help rule out composite dreibens in a prime 
dreiben search.
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Here, we will use the divisibility rule for 7 to aid us. Recall 
the divisibility rule for 7:

Notice that the powers of 10 (mod 7) forms a cyclic group 
of order 6.

Let us use the above divisibility rule to determine, as an 
example, 9487310294 (mod 7):

Dreibens consist of only 7’s and 3’s; hence, the divisibility 
of a dreiben by 7 depends on both the number and place-
ment of 3’s amongst its digits. (Neither the number nor 
placement of 7’s in a dreiben affect its divisibility by 7, as 
we can tell from the divisibility rule for 7.) Let Dn

j(i) be the 
number of dreibens of length n with i number of j’s in it, 
e.g. Dn

3(2) is the number of dreibens of length n where 3 
occupies exactly 2 digits of each dreiben. Since the divisi-
bility of a dreiben by 7 depends on the number and place-
ment of 3’s amongst that dreiben’s digits, we would stand 
to gain from investigating Dn

3(i).

As you may have realized already,

Evidently, by examining Dn
3(i), we can approach the prob-

lem of determining the number of dreibens of length n 
divisible by 7. Our approach will involve investigating Dn

3(i) 
with varying i to see if we can make any generalizations 
about Dn

3(i).

First, let us examine Dn
3(0). There is only one way to put 

exactly zero 3’s in a dreiben; every digit of that dreiben 
must be 7. Obviously, if a number’s digits are all 7’s, then 
the number is divisible by 7. Since all of the digits of a 
dreiben with zero 3’s is 7, and since there is only one way 

to make a dreiben of length n with zero 3’s, we can easily 
see that Dn

3(0) = 1.

Next, we can examine Dn
3(1) = 0. There are no dreibens 

with only one 3, since 3 times any digit place 10x is never 
divisible by 7, so Dn

3(1) = 0.

So far, we have covered two very simple instances of Dn
3(i). 

When i = 0, there is only a single way to make a dreiben 
divisible by 7. When i = 1, it is impossible to make a dreiben 
divisible by 7. However, as i increases, the problem of de-
scribing Dn

3(i) becomes much more complicated. The next 
question in our investigation of Dn

3(i) involves i = 2. In 
other words, how many ways are there to put exactly two 
3’s in a dreiben of length n? Putting exactly two 3’s in a 
dreiben of length n means we must choose two digit places 

10x and 10y where x ≠ y and 0 ≤ x, y ≤ n - 1. Putting our 
two 3’s in these two digit places, we find that the 
dreiben is congruent to 3(10x + 10y) (mod 7). Clearly, 
the dreiben is divisible by 7 if and only if 10x + 10y is 
divisible by 7, so we need only consider 10x + 10y 
(mod 7). 

What are the possible ways to make 10x + 10y ≡ 0 (mod 7)? 
The powers of 10 modulo 7 form a cyclic group of order 6; 
without loss of generality, the possible solutions are

(a) 10x ≡ 1 (mod 7), 10y ≡ 6 (mod 7)

(b) 10x ≡ 2 (mod 7), 10y ≡ 5 (mod 7)

(c) 10x ≡ 3 (mod 7), 10y ≡ 4 (mod 7)

Another way to write the possible solutions is

(a) x ≡ 0 (mod 6), y ≡ 3 (mod 6)

(b) x ≡ 2 (mod 6), y ≡ 5 (mod 6)

(c) x ≡ 1 (mod 6), y ≡ 4 (mod 6)

For each solution, we choose one digit place each from two 
sets of digit places. Here, we introduce some notation that 
will make the later calculations more concise:

•  α is the set of digit places 10x ≡ 1 (mod 7), i.e. x ≡ 0 (mod 6).

•  β is the set of digit places 10x ≡ 2 (mod 7), i.e. x ≡ 2 (mod 6).

•  γ is the set of digit places 10x ≡ 3 (mod 7), i.e. x ≡ 1 (mod 6).

•  δ is the set of digit places 10x ≡ 4 (mod 7), i.e. x ≡ 4 (mod 6).

•  ε is the set of digit places 10x ≡ 5 (mod 7), i.e. x ≡ 5 (mod 6).

•  ζ is the set of digit places 10x ≡ 6 (mod 7), i.e. x ≡ 3 (mod 6).
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As an example, one possible way to put two 3’s into a 
dreiben is to choose one digit place from α and another 
digit place from ζ. The number of possible combinations 
of choosing two digit places, one from α and one from ζ, is 
(|α|

1 )(|ζ|
1 ) = |α|·|ζ|. Applying this to the other sets of digit plac-

es, we find that

As you may have noticed, the cardinality of the six sets 
above depends on n (mod 6). This can be seen in Table 2 
below: 

Hence,
•  If n ≡ 0 (mod 6), then

•  If n ≡ 1 (mod 6), then

•  If n ≡ 2 (mod 6), then

•  If n ≡ 3 (mod 6), then

•  If n ≡ 4 (mod 6), then

•  If n ≡ 5 (mod 6), then

Evidently, Dn
3(2) = [ n2/12 ]. Let us prove this.

Proof. If n ≡ 0 (mod 6), i.e. n = 6m where m is an integer, 
then

If n ≡ 1 (mod 6), i.e. n = 6m + 1 where m is an integer, then

If n ≡ 2 (mod 6), i.e. n = 6m + 2 where m is an integer, then

If n ≡ 3 (mod 6), i.e. n = 6m + 3 where m is an integer, then
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If n ≡ 4 (mod 6), i.e. n = 6m + 4 where m is an integer, then

If n ≡ 5 (mod 6), i.e. n = 6m + 5 where m is an integer, then

Therefore, in general, Dn
3(2) = [ n2/12 ].

How many ways are there to put exactly three 3’s in a 
dreiben of length n, i.e. what is Dn

3(3)? We must choose 
three digit places 10x, 10y, and 10z where x ≠ y ≠ z and 0 ≤ x, 
y, z ≤ n - 1. Now the question is, what are the possible ways 
to make 10x + 10y + 10z ≡ 0 (mod 7)?

In fact, there are eight cases: without loss of generality, the 
possible solutions are

(a) 10x ≡ 1 (mod 7), 10y ≡ 1 (mod 7), 10z ≡ 5 (mod 7)

(b) 10x ≡ 1 (mod 7), 10y ≡ 2 (mod 7), 10z ≡ 4 (mod 7)

(c) 10x ≡ 1 (mod 7), 10y ≡ 3 (mod 7), 10z ≡ 3 (mod 7) 

(d) 10x ≡ 2 (mod 7), 10y ≡ 2 (mod 7), 10z ≡ 3 (mod 7)

(e) 10x ≡ 2 (mod 7), 10y ≡ 6 (mod 7), 10z ≡ 6 (mod 7)

(f) 10x ≡ 3 (mod 7), 10y ≡ 5 (mod 7), 10z ≡ 5 (mod 7)

(g) 10x ≡ 4 (mod 7), 10y ≡ 4 (mod 7), 10z ≡ 6 (mod 7)

(h) 10x ≡ 4 (mod 7), 10y ≡ 5 (mod 7), 10z ≡ 5 (mod 7)

These cases can be split into two categories. Cases (b) and 
(f) entail choosing one digit place from each of three sets, 
whereas the remaining cases entail choosing two digit 
places from one set and one digit place from another. To 
describe these two categories, let us examine cases (b) and 
(c).

In case (b), we are choosing one digit place each from the 
sets α, β, and ζ. Hence, the number of possible combina-
tions of three digit places chosen thusly is (|α|

1 )(|β|
1 )(|ζ|

1 ) = 
|α|·|β|·|ζ|.

In case (c), we are choosing one digit place from α and two 
digit places from γ. Hence, the number of possible combi-
nations of three digit places chosen thusly is (|α|

1 )(|γ|
2 ) = 

|α|·(|γ|)(|γ|-1)/2. Describing the other cases similarly, we 
find that

As before, since the cardinalities of the sets α through ζ 
are dependent on n (mod 6), we would be best served writ-
ing out each of the six possible cases to see if we notice a 
pattern:

•  If n ≡ 0 (mod 6), then

•  If n ≡ 1 (mod 6), then

•  If n ≡ 2 (mod 6), then
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•  If n ≡ 3 (mod 6), then

•  If n ≡ 4 (mod 6), then

•  If n ≡ 5 (mod 6), then

Table 3 summarizes what we have learned so far about 
Dn

3(2) and Dn
3(3):

Given that Dn
3(2) = , it seems reasonable to suspect that 

Dn
3(3) = . Let us see if examining some values of 

Dn
3(3) and  will enlighten us.

As evident from Table 4 above, Dn
3(3) ≠ , but they 

seem very similar. Determining the relationship between 
Dn

3(3) and  may be a topic for future research, but is 
beyond the scope of this paper.

Finding Dn
3(i) for greater values of i becomes increasingly 

difficult, perhaps even impractical. It is beyond the scope 
of this paper, but should a general form for Dn

3(i) be found, 
one could, from a combinatorial perspective, corroborate 
the results of the second section, allowing one to find a 
different form for the explicit equation of Ai

7(n). In other 
words, one would have yet another method to determine 
the number of dreibens of length n divisible by 7.
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Conclusion 

While we are still far from determining whether the set of 
prime dreibens is finite or infinite, our exploration of 
dreibens modulo 7 has cast much light on the problem. 
Now, we have several methods to determine how many 
dreibens of length n are divisible by 7, therefore allowing 
these dreibens to be ruled out during our search for prime 
dreibens. We have also opened up several opportunities for 
inquiry. For instance, explicit matrices for An where n ≡ 1, 
2, 3, 4, 5 (mod 6) must still be determined. The relation-
ship between Dn

3(3) and  remains a promising mys-
tery, and we have yet to find a generalized formula for 
Dn

3(i). Although dreibens remain a mysterious type of 
number, current research in dreibens show promise in 
both uncovering new mathematical problems and achiev-
ing our ultimate goal of finding infinitely many prime 
dreibens, if they exist.
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