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Abstract:

Assembling equivalent test forms with minimal test overlap across forms is important in 
ensuring test security. Chen and Lei (2009) suggested an exposure control technique to 
control test overlap-ordered item pooling on the fly based on the notion that test overlap 
rate – ordered item pooling for the first t examinees is a function of test overlap rate – 
ordered item pooling for the previous (t-1) examinees. The exposure control procedure 
to manage test overlap-ordered item pooling on the fly appears to meet the needs of 
controlling test overlap rate for tests assembled sequentially. To develop a better under-
standing of how well the ordered-item-pooling control method functions in automated 
assembly of multiple forms with the weighted deviations model (WDM) heuristic, this 
study evaluated its performance under different conditions of test length and test-con-
tent specifications by comparing the outcomes to those from the corresponding baseline 
automated-test-assembly (ATA) conditions, where test overlap controls were not consid-
ered. The evaluation criteria included (i) the conformity to the test-assembly constraints, 
(ii) test parallelism in terms of the resultant psychometric properties, (iii) average test 
overlap rate, and (iv) distribution of item exposure rate. The results showed that the 
ordered-item-pooling control procedure demonstrated its effectiveness in most experi-
mental conditions by achieving an acceptable average test overlap rate across multiple 
forms without compromising the conformity to the test-assembly constraints and the 
test equity of the assembled forms. Moreover, test security might be ensured in less sup-
portive contexts for ATA by imposing item exposure control together with test overlap 
control that would be less likely to compromise test quality. More research is needed to 
verify this hypothesis.
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Introduction
The automated assembly of multiple test forms for online delivery 

offers an alternative to a single, computer-administered, fixed test form 
or even a computerized adaptive test. The constructed forms are usually 
assembled according to content and psychometric specifications obtained 
from a reference test. A reference test refers to a test form that has been 
administered previously and has exhibited acceptable results in terms of 
form difficulty, variability, passing rate, or other psychometric consider-
ations. If the assembled tests all meet these reference specifications, the 
test forms can be regarded as equivalent in some sense. For example, if 
the psychometric specifications refer to a target test information function 
(TIF) or target test characteristic function (TCF), then the assembled test 
forms would be TIF or TCF parallel if all of the psychometric specifications 
were met for all test forms (McDonald, 1999, p. 351). Accordingly, equiva-
lence would in fact mean parallelism. The result is that a single passing 
standard or score could be used across forms without post-administration 
equating or the establishment of separate passing scores for each form.

Theoretically, if pre-equated test forms are truly parallel, post-test 
equating or the establishment of separate passing scores for each form 
may not be required. The reason for this is because the differences in a 
candidate’s scores on multiple test forms should occur from random fluc-
tuation instead of systematic differences in the test forms. Accordingly, 
assembling multiple test forms before administration is an appealing idea 
because pre-equated (parallel) test forms could be administered to exam-
inees in high-stakes testing situations with a nominal amount of post-
administration delay in reporting scores when designed properly. 

However, the multiple equivalent forms may or may not consist of 
unique test items. In automated assembly of multiple equivalent test 
forms, a test assembly algorithm selects test items according to their 
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ability to satisfy a set of particular constraints. Items with greater ability 
to fulfill all constraints may be presented in most forms, whereas items 
with less ability to fulfill all constraints may never be used. Additionally, 
when item pools from which the forms are assembled are small relative to 
the required length of the test forms and the number of forms required, 
individual items may have to appear on more than one form. If enough 
items appear frequently on many forms, test security and validity will be 
in question, and the cost of developing and maintaining item pools will 
increase. 

Therefore, test overlap control is an important concern, and may be 
more crucial for automated test assembly (i.e., ATA) than for computer-
ized adaptive testing (i.e., CAT). In CAT, it is well recognized that the test 
overlap rate tends to be much greater for examinees of similar ability. 
Similarly, in the context of assembling equivalent test forms, the test 
overlap rate would be extremely high because the items selected to fulfill 
the constraints (e.g., target test information function) would be almost 
the same across multiple test forms without exposure control.

Accordingly, one of the goals of the test assembly process should be 
to minimize test overlap rate, defined as the percentage of items shared 
between any two forms. In automated test assembly, one way to do this 
is to include item usage as another constraint or target in the solution of 
the assembly problem. However, this may be unnecessary, especially if the 
test-assembly process is burdened with numerous other constraints such 
as multiple levels of content classifications and key balancing require-
ments, in addition to the psychometric requirements of the tests. That is, 
any constraint that forces items onto a test form may end up doing so at 
the expense of other constraint goals. To achieve an acceptable average test 
overlap rate (ATOR) across multiple forms without compromising the con-
formity to the test-assembly constraints, it may be more efficient to imple-
ment item exposure control outside the solution of the assembly process. 
Research with more comprehensive investigation of such an approach to 
effectively control the test overlap rate in automated test assembly may be 
useful. 

Traditional Procedure of Item Exposure Control in 
Computer Based Testing

The typical procedure used to control for item exposure in CAT is a 
conditional approach first proposed by Sympson and Hetter (1985). The 
Sympson and Hetter (SH) control algorithm is based on the concept of 
conditional probability: Pi(S,A) = Pi(A|S) × Pi(S), where Pi(S,A) is the prob-
ability that item i is selected and administered for a testing administration, 
Pi(S) is the probability that item i is selected, and Pi(A|S) is the proba-
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bility of administering an item, given that it has been selected. Pi(A|S) 
is also regarded as an item’s exposure control parameter. Given a max-
imum expected item-exposure rate or a target-exposure rate (r), if Pi(S,A) 
is replaced by r, the goal of the SH probabilistic method is to obtain the 
item exposure control parameters for all items in the pool with an itera-
tive simulation process. The item exposure control parameters control the 
item administration such that every item is administered no more than 
r100% of the time, where 0 ≤ r ≤ 1.

Exposure Control at the Item and  
the Test Levels

It is important to track item exposure at the item level and at the test 
level by monitoring item exposure rate and test overlap rate. Item exposure 
rate is defined as the percentage of all exams in which an item is adminis-
tered. Test overlap rate is usually defined as the percentage of items shared 
by a pair of exams (or tests) of a fixed length. However, most research has 
paid more attention to item exposure control at the item level than at the 
test level. With high test overlap rates across multiple equivalent forms, 
test takers are very likely to obtain test information from those who have 
taken an alternative form. To ensure test security, controlling test overlap 
rate is necessary in the context of continuously administering alternate 
test forms. 

To investigate how to simultaneously control item exposure at the 
item and test levels in CAT, Chen, Ankenmann, and Spray (2003) derived 
an algebraic function to reveal the relationship between the average test 
overlap and item exposure rate. Specifically, with a large-sample approxi-
mation, 

where T is the average test overlap rate between pairs of CATs, and μ 
and S2 are the mean and variance of item exposure rates, respectively. 
Accordingly, the test overlap rate can be governed by controlling the mean 
and variance of the item exposure rates. Additionally, they suggested that 
the value of μ could be considered to be a maximum allowable rate for 
any single item, and thereby item exposure control methods which require 
a specification of maximum item exposure rate (e.g., Sympson & Hetter, 
1985) would yield the most direct control at the test level as well as at the 
item level. Following Chen et al.’s suggestion of controlling the mean and 
variance of the item exposure rates, Chen and Lei (2005) developed an 
item exposure control method to provide item exposure control at both 

T  =   S2 + µ2

µ 
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the item and test levels. The method proposed by Chen and Lei (2005) is 
an extension of the Sympson and Hetter (SH) procedure, and is called the 
SH procedure with test overlap control (SHT).

However, acknowledging that stable item exposure parameters need 
to be derived from time-consuming iterative simulations in SH and SHT 
procedures before operational test administration, recent research shows 
interest in controlling item exposure on the fly or during test administra-
tion. For example, Chen, Lei, and Liao (2008) proposed an on-line version 
of the SHT procedure to control exposure rate at the item and test levels. 
Although the exposure parameters are still required for this on-line pro-
cedure to control item exposure rates and test overlap rate, the exposure 
parameters are updated sequentially on the fly, instead of through itera-
tive simulations before operational test administration. This simulation 
study also showed that the on-line method performed better than the SHT 
procedure in controlling item exposure and test overlap at the early stage 
of the simulation (Chen, Lei, & Liao, 2008). 

To control item exposure and test overlap in CATs more efficiently, 
Chen and Lei (2009) developed an on-line exposure control procedure that 
does not require any exposure parameters. Instead, this on-line method 
uses an item’s usage status earlier in the testing to evaluate if this item 
is administered to the next examinee given that it is selected. Noting 
that the procedures previously developed to control item exposure and 
test overlap simultaneously were designed only for the context of item 
overlap between pairs of examinees, Chen and Lei (2009) extended Chen, 
et al.’s (2003) study by deriving a mathematical relationship between item 
exposure rates and test overlap rate for a group of examinees greater than 
two. Three forms of test overlap were defined in Chen and Lei’s (2009) 
study: item sharing, unordered item pooling, and ordered item pooling. 
Item sharing was defined as the number of items commonly shared by 
all test takers in a group, unordered item pooling was the number of 
common items between an examinee and any possible α examinees in a 
group, and ordered item pooling referred to the number of overlapping 
items between a test taker and any α examinees who took the test earlier. 
Moreover, Chen and Lei (2009) suggested an exposure control procedure 
to control test overlap-ordered item pooling on the fly based on the notion 
that test overlap rate—ordered item pooling for the first t examinees is a 
function of test overlap rate—ordered item pooling for the previous (t-1) 
examinees. 

In continuous testing such as CAT, controlling test overlap-ordered 
item pooling may be more practically useful than controlling the unordered 
item pooling (Chen & Lei, 2009) because continuous testing is ordered 
in the sense that tests are administered sequentially. However, this pro-
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posed procedure has not been applied in any research or operational set-
ting. A thorough investigation may be required to examine the effects of 
the proposed procedure on controlling test overlap rate. In automated test 
assembly with a heuristic such as the weighted deviations model (WDM) 
heuristic, test forms are assembled sequentially, which is similar to tests 
administered continuously. The exposure control procedure to manage 
test overlap-ordered item pooling on the fly appears to meet the needs of 
controlling test overlap rate for tests assembled sequentially. Additionally, 
estimating the exposure parameters for all items in the pool may not be nec-
essary because not only is the number of assembled alternate forms much 
smaller than the number of examinees taking CATs, but also only items 
with particular characteristics would be selected for assembling alternate 
test forms. Therefore, controlling test overlap-ordered item pooling would 
be an appropriate method for automated test assembly and was applied 
in the current research. More detailed explanations of the ordered-item-
pooling control are presented in the section to follow.

Purpose of the Study
Based on the rationale described in the previous paragraph, the pur-

pose of this study is to comprehensively investigate the effectiveness 
of ordered-item-pooling control in automated test assembly with the 
weighted deviations model (WDM). This exposure control procedure was 
applied to minimize test overlap rate between pairs of test forms while 
producing tests that still meet content and psychometric constraints. 
To develop a better understanding of how well the ordered-item-pooling 
control method functions in automated assembly of multiple forms, this 
study evaluates its performance under different conditions of test length 
and test-content specifications. The performance under various conditions 
was compared to those from the corresponding baseline ATA conditions, 
where test overlap controls were not considered. The evaluation criteria 
include (i) the conformity to the test-assembly constraints, (ii) test paral-
lelism in terms of the resultant psychometric properties, (iii) average test 
overlap rate, and (iv) distribution of item exposure rate.

Ordered-item-pooling control was implemented outside of the ATA 
process rather than including it as another constraint to avoid compro-
mising the conformity to the test-assembly constraints. That is, this expo-
sure control method was used to control the administration (or utilization) 
rate of an item after the item was selected based on the test-assembly algo-
rithm. 
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Benchmark for Minimizing Test Overlap Rate
The target maximum test overlap rate is required in the ordered-

item-pooling control procedure, and the specification of the target rate 
should be optimal in the sense that the target rate results in minimum test 
overlap while producing tests meeting test-assembly constraints. Chang 
and Zhang (2002) propose a theoretical lower bound of test overlap rate 
under the assumption of completely randomized item selection. The theo-
retical lower bound could be used as a criterion to evaluate the degree of 
test overlap. Chen, Ankenmann, & Spray (2003) further suggested that  
r = (k ÷ n) could serve as the target rate to minimize test overlap, where k 
is the test length and n is the pool size. However, selecting items according 
to psychometric and non-psychometric constraints rather than drawing 
them at random, r = (k ÷ n) may not be realistic (Chen, et al., 2003). An 
optimal benchmark or target for test overlap rate would be a value greater 
than (k ÷ n). However, the value of r = (k ÷ n) could be used as a starting 
point for constraining test overlap rate in the ordered-item-pooling con-
trol procedure. This is a starting value in the sense that it will be replaced 
in the process of specifying or searching for an optimal maximum average 
test overlap rate, given that an optimal target should meet the standard 
of fulfilling the requirement of the test-overlap rate of less than r = (k ÷ 
n) while satisfying test-assembly specifications. The process of specifying 
optimal maximum average test overlap rate is described further in the 
methods section.

Lin (2008) suggested that an expected baseline test-overlap rate, 
E(BTOR) (Chen, Ankenmann, & Spray, 2003) could be an alternative target 
for constraining test overlap rate that would be less likely to compromise 
test quality because this index ensures that content specifications will be 
met. This suggestion makes sense because the constraint E(BTOR) is less 
strict than the value of r = (k ÷ n), and content requirements must be satis-
fied to ensure content validity in most alternate-form assembly problems. 
However, similar to the value of r = (k ÷ n), achieving the test-overlap rate 
of E(BTOR) while meeting test-assembly specifications may not be pos-
sible under strict test assembly conditions (e.g., small pool sizes and too 
many constraints), and therefore another target that is slightly greater 
than E(BTOR) would be more realistic. However, achieving the minimum 
test-overlap rate while meeting content specifications and ensuring con-
tent validity could be an appropriate criterion to examine the acceptability 
of the resultant test overlap rate in this study. Therefore, comparisons of 
ATOR and E(BTOR) were conducted to evaluate the effectiveness of the 
ordered-item-pooling control procedure in ATA. A large difference between 
ATOR and E(BTOR) would signal a possible problem in test security and 
indicate the necessity of a more stringent exposure control procedure. 
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Accordingly, it is helpful to introduce E(BTOR) in detail. Given that 
there are J content categories, j = 1, 2, …, J, in an item pool, the item 
pool of size n is stratified into n1, n2, …, nJ mutually exclusive partitions. 
In addition to the psychometric constraints, the test-assembly specifica-
tions require that m1, m2, …, mJ items from each of these content catego-
ries appear on each assembled form and each form needs to be m items in 
length. The expected value of the baseline overlap rate or E(BTOR) for one 
content area will be shown first, and E(BTOR) for the entire test of length, 
m, is the sum of these expected values. Given that the random variable, 
Y, is the number of identical items between any two tests, Y ÷ m is the 
observed overlap rate for those tests. Possible values for the random vari-
able, Y could be 0, 1, …, m. When Y = 0, there are no shared items between 
any two forms, whereas, when Y = m the test forms are identical. 

When only content constraints are imposed in ATA, mj items will be 
drawn at random from each content area j. For each content area j, there 
are   

possible combinations of the mj items selected from the Cj items in that 
content area. Within each content area j, repeated draws will produce Xj 
common items shared by pairs of test forms, and Xj is distributed as a 
hyper-geometric random variable. Therefore, 

is defined as the probability that Xj, the number of common items in con-
tent area j, equals x, where x = 0, 1, …, mj. The expected value of Xj (Ross, 
1976) for the jth content area is given as follows:

⎛
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The expected value of Y over all J content areas can be expressed as:  

and thereby the expected value of the baseline test overlap rate can be 
expressed as:

Controlling Test Overlap— 
Ordered Item Pooling

For continuous testing, Chen and Lei (2009) express average test 
overlap rate—ordered item pooling for the t tests administered or assem-
bled sequentially (i.e., Ωα, t) as a function of average test overlap rate—
order item pooling for the previous (t-1) tests (i.e., Ωα, (t-1) ). The expression 
is given in the following equation (please see Chen & Lei (2009) for the 
detailed derivation): 

Equation 1:

where t is the number of tests administered or assembled, mit is the number 
of times item i appears over the t tests, mi(t-1) is the number of times item 
i appears over the previous (t-1) tests, m is the test length and n is the 
number of items in the pool. If item i is included in the tth test, the number 
of times item i appears across the t tests is greater than the number of 
times item i appears over the previous (t-1) tests by one and thereby mit – 
m(it-1) = 1. On the other hand, mit – m(it-1) = 0 when item i is not included in 
the tth test. Therefore,   

is the sum of   

E(Y )  =   

×  E(Y )  =   E          =   

E(Xj )  =   
mj

2
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over the m items in a test although the summation  

is defined for all n items in the pool. This equation will yield the average 
percentage of common items between a particular test and a group of α 
tests that have been previously administered or assembled. If α = 1, Ωα, t 
represents the average test overlap rate between pairs of tests. 

Example 
Average test overlap rate—ordered item pooling can be computed 

based on the rate computed for previous tests using Equation 1 (previous 
page). Given that α = 1, m = 5, and the number of test to be assembled (t) 
equals 5, to compute the average test overlap rate between pairs of tests for 
the five assembled tests (Ω1, 5), the average test overlap rate between pairs 
of tests for the previous four assembled tests (Ω1, 4) needs to be obtained. 
Similarly, Ω1, 3 needs to be obtained to compute Ω1, 4, and Ω1, 2 needs to be 
obtained to compute Ω1, 3. Table 1 shows the items selected in the tests, 
which are assembled sequentially. Along with the data in Table 1, Table 
2 lists the number of times each item is selected for the first t assembled 
tests (mit), t = 1, 2, … 5. Take Test 3 (t = 3) for example, items 3, 6, 9, 2, and 
4 are selected into the test (Table 1, next page). At this point, item 1 has 
not been used, item 2 is selected for the first time, item 9 has been selected 
three times, items 3, 4, 6, and 7 have been selected twice, and items 5, 8, 
and 10 have been selected once (Table 2, next page). Substituting the data 
from Table 2 into Equation 1:

Ω1, 2 = 2/5  , Ω1, 3 = 7/15  , Ω1, 4 = 8/15  , and Ω1, 5 = 14/25 . 

Detailed computation is provided as follows:

Ω1, 2 = 
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Table 1:	 Items Included in Each Assembled Test

Test number (t) Item (i) selected into test

1 3 4 7 6 9

2 9 5 7 8 10

3 3 6 9 2 4

4 9 8 10 4 3

5 7 4 5 10 9

Table 2:	 Item Usage Corresponding to Items Selected in Table 1  
for the First t Tests

Item (i) selected into test

Test number (t) 1 2 3 4 5 6 7 8 9 10

1 0 0 1 1 0 1 1 0 1 0

2 0 0 1 1 1 1 2 1 2 1

3 0 1 2 2 1 2 2 1 3 1

4 0 1 3 3 1 2 2 2 4 2

5 0 1 3 4 2 2 3 2 5 3

Chen and Lei (2009) pointed out a critical element in controlling  
Ωα, t, which is  

as α, t, m, and Ω are known after (t-1) tests have been administered or 
assembled. For the exposure-control procedure based on Equation 1 (page 
11), a maximum expected test overlap rate, Ωmax, is first specified. To con-
strain  Ωα, t at a rate no greater than Ωmax, λ and Ωmax would have the fol-
lowing relationship.

Equation 2:

λ  =   (t–mit)α[mit – mi(t-1)]∑ 
i=1 

n

(Ωα, (t-1)) +   –  Ωα, t  =   
t – α – 1

t
α + 1

t m ( tα+1)

(t–mit)α[mit – mi(t-1)]∑ 
i=1 

n

≤ Ωmax 
⎛
⎜
⎝

⎞
⎟
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Equation 3:

As described previously, λ is the sum of   	

over the m items in a test although equation 3 defines λ as the sum of   

over all n items in a pool. Based on Equation 3, to make λ no less than D, 
each item selected for inclusion should have a contribution of at least  D/m 
added to λ, given that the contribution of each item refers to

Note that the term Ωα, (t-1) in D is computed based on the procedure 
described in the previous example section. As a result, D/m serves as an 
item inclusion criterion to govern the inclusion or administration of items. 
Specifically, to control Ωα, t at a rate less than Ωmax, an item should have 
contribution,  

no less than D/m to be included in the tth test. This criterion for item inclu-
sion to control test overlap rate seems reasonable in ATA given that a 
greater (t – mit) signals a smaller number of times that item i is included in 
or appears over the t tests, and thereby items with greater  

would tend to be included in a test currently assembled to make item-usage 
distribution more even. Based on the previous example, if Ωmax is specified 
as 0.2 and the 4th test is to be assembled, Equation 3 becomes

or λ ≤ D = 16. To control Ωα, t (i.e., Ω1, 4) at a rate no greater than Ωmax, an 
item with contribution,  

no less than 16/5 is included in the test. Similarly, when the 5th test is to be 
assembled, Equation 3 becomes
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or λ ≥ D = 26. An item with contribution,  

not less than 26/5 is included in the test to control Ω1, 5 not greater than 
0.2.

Methods
The following section introduces the design of the study, characteristics 

of the item pool, properties of the reference target on which to base the 
test-assembly constraints, procedure of implementing the ordered-item-
pooling control in ATA with the WDM heuristic, specification of maximum 
average test overlap rate, and criteria used to evaluate the effectiveness of 
the ordered-item-pooling control.

Design
The ordered-item-pooling control procedure was compared to the 

baseline condition—no exposure control, to investigate the effectiveness 
of this exposure control method. Variables examined that might influence 
this comparison included (1) ratio of test length to the size of item pool, 
and (2) test-content specification. Therefore, this comparison was con-
ducted under the experimental conditions from the combination of the 
two variables. To investigate the effectiveness of the ordered-item-pooling 
control process for short, moderate, and long tests, three test lengths of 
60, 90, and 120 items respectively were studied. Three test lengths repre-
sented three ratios of test length to the size of item pool, which were 0.10 
(60 ÷ 600), 0.15 (90 ÷ 600), and 0.20 (120 ÷ 600). In this study, because 
only one item pool was used, test length and the ratio of test length to the 
pool size were used interchangeably. 

Additionally, two content specifications were studied. One content 
specification mirrored the content distribution of the item pool and is 
called balanced content specification. The other did not match the content 
distribution and is called unbalanced content specification. Accordingly, 
the effectiveness of the ordered-item-pooling control process was evalu-
ated under 6 experimental conditions (i.e., 3 ratios of test length to the 
size of item pool × 2 content specifications). Ten test forms were assem-
bled under each experimental condition using the WDM heuristic—a flex-
ible and straightforward method for automated test assembly.

(5–mit)1[mi5 – mi(5-1)]
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Item Pool
The item pool used in this study contained 600 calibrated Mathematics 

items, and covered four content areas: 152 content-A items, 127 content-
B items, 147 content-C items, and 174 content-D items (Table 3). The 600 
mathematics items were calibrated using the 3-parameter logistic model 
(3-PLM) in the computer program, Bilog-MG (Zimowski, Muraki, Mislevy, 
& Bock, 2003) with the default prior θ ~ N(0,1). The average item param-
eters, a, b, and c, in the pool were 0.965, 0.127, and 0.178, respectively. 
Additionally, the average item p-values and point-biserial correlations in 
the pool were 0.559, and 0.395, respectively. The item pool contained pre-
dominantly medium to slightly difficult items as the test information for 
the Mathematics item pool peaked at θ = 1.

Table 3:	 Content Distribution of the Item Pool and Test-content Specification 
for Short, Mid-length, and Long Tests (ratio = 0.1, 0.15, and 0.2, 
respectively) Under Balanced and Unbalanced Content Conditions

Ratio = 0.1 = 60/600 Ratio = 0.15 = 90/600 Ratio = 0.2 = 120/600

Content 
Area

Item 
Pool Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced

A 152 
(25%)

15 
(25%)

8 
(13%)

23 
(25%)

12 
(13%)

30 
(25%)

16 
(13%)

B 127 
(21%)

13 
(21%)

4 
(7%)

19 
(21%)

6 
(7%)

25 
(21%)

8 
(7%)

C 147 
(25%)

15 
(25%)

20 
(33%)

22 
(25%)

30 
(33%)

30 
(25%)

40 
(33%)

D 174 
(29%)

17 
(29%)

28 
(47%)

26 
(29%)

42 
(47%)

35 
(29%)

56 
(47%)

Note: ratio = ratio of test length to item-pool size.

ATA Constraints
To investigate how the ordered-item-pooling control process per-

formed under various test lengths and content specifications, three test 
lengths (short, mid-length, and long) and two content specifications (bal-
anced and unbalanced) were studied. One content specification mirrored 
the content distribution of the item pool, but the other did not. The per-
centages of content areas for the two sets of test-content specifications 
are presented in Table 3. The combinations of test length and content 
specification yielded six reference targets (Table 4, next page). The first 
reference target represented a short target test with content distribution 
mirroring that of the pool (i.e., balanced content outline); the second ref-
erence target represented a short target test with content distribution 
not mirroring that of the pool (i.e., unbalanced content outline); the third 
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reference target represented a mid-length target test with content distri-
bution mirroring that of the pool; the fourth reference target was a mid-
length target test with content distribution not mirroring that of the pool; 
the fifth reference target was a long target test with content distribution 
mirroring that of the pool; the sixth reference target was a long target test 
with content distribution not mirroring that of the pool. 

Table 4:	 Six Reference Targets

Ratio = 0.1 = 60/600 Ratio = 0.15 = 90/600 Ratio = 0.2 = 120/600

Content distribution  
mirrors the pool 1st Reference 3rd Reference 5th Reference

Content distribution  
does not mirror the pool 2nd Reference 4th Reference 6th Reference

Note: ratio = ratio of test length to item-pool size.

These reference targets were used to define the content and psycho-
metric targets required for all constructed forms of the test. Under a par-
ticular content specification, the percentage of content specifications was 
the same for all test lengths. In terms of psychometric properties, each 
of the ten tests assembled was constrained to have the test information 
function matching the target function from the reference target. Within 
each reference target, the target test information was specified at 33 θ 
points, ranging from –4.00 to +4.00 in increments of 0.25. Under a given 
test length, the target test information function was the same for the bal-
anced and unbalanced content specifications. That is, the psychometric 
constraints varied with test length. The target test information functions 
from the six reference forms were plotted in Figures 1–3 (below and next 
page).

Figure 1:	 Test Information Functions for the 60-Item Reference Test and 
Poorest Matching Test Forms With and Without Test-overlap  
Control Under Balanced (I) and Unbalanced (II) Content Conditions

I: Balanced II: Unbalanced
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Figure 2:	 Test Information Functions for the 90-Item Reference Test and 
Poorest Matching Test Forms With and Without Test-overlap  
Control Under Balanced (I) and Unbalanced (II) Content Conditions

Figure 3:	 Test Information Functions for the 120-Item Reference Test and 
Poorest Matching Test Forms With and Without Test-overlap  
Control Under Balanced (I) and Unbalanced (II) Content Conditions

Overall, the ATA task was to assemble ten tests with the WDM heuristic 
that followed the content and psychometric constraints specified from 
each reference form with all constraints weighted equally. Analyses were 
done following the content and psychometric constraints for six separate 
reference targets. In practice, the constraints may consist of upper and 
lower boundaries around the target values, so that there is some degree of 
flexibility in meeting each constraint. For this study, 37 constraints were 
defined to assemble a test form under each reference target, including 4 
content and 33 psychometric constraints. 

The ATA constraints specified in this study reflect a typical scenario 
of assembling equivalent forms. Within the framework of IRT and auto-
mated test assembly, alternate test forms are typically produced based 
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on Samejima’s definition of weakly parallel forms in which the forms are 
matched to a target test information function (TTIF) (e.g., Armstrong, 
Jones, Li, & Wu, 1996; Luecht & Hirsch, 1992; Luecht, 1998; Swanson 
& Stocking, 1993; van der Linden & Boekkooi-Timminga, 1989; van der 
Linden & Adema, 1997). This is a method reasonably simple to implement 
because item information functions are additive and easy to manipulate 
(van der Linden, personal communication). 

Specification of Maximum Average Test Overlap Rate 
For ATA, conformity to the test-assembly constraints is the major 

concern. The optimal exposure control procedure for ATA would be the 
method that generates a minimum average test overlap rate (ATOR) while 
meeting all assembly requirements or constraints, where “minimum” must 
be specified. In the ordered-item-pooling control process, the maximum 
expected test overlap rate, Ωmax, should be first specified so that the resul-
tant average test overlap rate would not exceed Ωmax. Accordingly, choosing 
a Ωmax such that the resultant average test overlap rate is a minimum and 
all assembly constraints have been satisfied is an important task in this 
exposure control procedure for ATA. 

Under each condition of the study, the value of Ωmax for ten test forms 
was set to (k ÷ n), which is a theoretical lower bound of test overlap rate 
under the assumption of completely randomized item selection, at the 
beginning of a set of iterations, where ten test forms were assembled at 
each iteration. The value of Ωmax was increased on successive computer runs 
until a value of Ωmax produced ten forms that met all test-assembly con-
straints and yielded a minimum value for ATOR. The Ωmax value obtained 
at the last iteration was the optimal Ωmax and was the maximum expected 
test overlap rate to be specified in the ordered-item-pooling control pro-
cess. Only a few iterations are necessary to obtain the optimal Ωmax.

Procedure of Assembling Alternate Test Forms Using the 
WDM Heuristic with Ordered-Item-Pooling Control

The test assembly algorithm used for this study was the weighted devia-
tions model (WDM) heuristic developed by Swanson and Stocking (1993). 
The WDM heuristic procedure designed for automated test assembly can 
be categorized as a greedy heuristic algorithm. The goal of the greedy heu-
ristic is the pursuit of the greatest improvement at each iteration toward an 
optimal solution. Accordingly, with the WDM heuristic, items are selected 
sequentially so that those chosen first provide the best improvement in 
conforming to all the constraints simultaneously. 

The test overlap control method applied in this study was the ordered-
item-pooling control procedure. To ensure that the average test overlap 
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rate was less than Ωmax, an item was included in a test if it was selected 
according to its ability to satisfy all of the constraints imposed in WDM 
and had contribution, 

of no less than the value of  D/m  . The procedure of assembling alternate  
test forms using the WDM heuristic with the ordered-item-pooling con-
trol is listed in the following section.

1.	 Determine the content constraints (i.e., test-content  
specification), psychometric constraints, the test length,  
n, the number of test forms to be drawn, and the weights  
for each of the constraints.

2.	 Specify the maximum average test overlap rate, Ωmax 
(described in the previous section).

3.	 Randomly select the first item. (Note: If multiple forms  
are to be drawn, the first item entering the test should be  
randomly selected from the item pool to avoid the same test 
form being assembled repeatedly (Parshall, Spray, Kalohn, 
& Davey, 2001). If the same item is selected to enter the 
test first, the same test form will be constructed repeatedly 
because the item-selection process based on the WDM  
heuristic is affected by past as well as future item selections.)

4.	 Evaluate items sequentially in terms of their ability to fulfill 
all the constraints with WDM. 

5.	 Select the item with the greatest ability to fulfill the con-
straints with WDM. 

6.	 Compare this selected item’s contribution, 

	 to the value of  D/m   . 

7.	 Evaluate if its   

	 is not less than the value of D/m  . If yes, include this item on the 
test form. Otherwise, set aside this item and select the next 
best item and evaluate if the corresponding   

	 is not less than the value of D/m  . 

8.	 Repeat Step (7) until the qualified item appears and include it 
on the test form being assembled.

(t–mit)α[mit – mi(t-1)]

(t–mit)α[mit – mi(t-1)]

(t–mit)α[mit – mi(t-1)]

(t–mit)α[mit – mi(t-1)]
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9.	 Repeat steps 4–8 until all m items (i.e., test length) are 
selected.

10.	Repeat steps 3–9 until the specified number of alternate test 
forms is reached.

Evaluation Criteria
In ATA, an exposure control method would need to demonstrate its 

effectiveness by achieving an acceptable average test overlap rate across 
multiple forms without compromising the conformity to the test-assembly 
constraints. Additionally, test equivalence of the assembled forms in the 
resultant psychometric properties (e.g. test difficulty) would need to be 
evaluated because the ATA task in the study involved equivalent-form 
assembly. Therefore, comparing the results to the baseline condition 
where no exposure control was conducted, the research evaluated the per-
formance of the ordered-item-pooling control procedure in terms of (i) the 
conformity to the content and psychometric constraints, (ii) test equity 
among the assembled forms in the resultant psychometric properties, 
(iii) average test overlap rate, and (iv) distribution of item exposure rate. 
Specifically, whether an average test overlap rate across multiple forms 
was acceptable was examined in terms of criteria (iii) and (iv).

Test Equity of the Assembled Forms

An assembled test is parallel to the reference test in content if it has 
the same content distribution as the reference test. A measure of this con-
formity is the percentage of content specifications met. Additionally, the 
assembled forms were constrained to have the TIF equivalent to a target 
TIF in the study, and thereby it is necessary to examine the extent to which 
the TIFs of the resultant test forms are similar to the target TIF.

To evaluate if the addition of the ordered-item-pooling control method 
into the ATA process would affect the equity of the assembled forms in 
the resultant psychometric properties, several indices conditional on the 
proficiency scales were examined among the assembled forms under each 
experimental condition. These conditional indices included the first cen-
tral moment of P(θ) or test characteristic function (i.e., TCF), the square 
root of second central moment of P(θ), and the conditional error variance 
of observed test score X (i.e., CEV of X). P(θ) denotes the item character-
istic function. These psychometric properties are resultant in the sense 
that they are the outcomes rather than test-assembly constraints in the 
ATA process. 

The first central moment of P(θ) is critical in assessing the conditional 
difficulty of the assembled tests. It is also important to evaluate the simi-



Controlling Test Overlap Rate� Lin

22

J·T·L·A

larity among the assembled tests in the second central moment of P(θ) to 
ensure equivalence in the variability of item difficulty over a span of pro-
ficiency points. The conditional error variance of observed test scores is 
defined as the sum of the product of the conditional correct-response prob-
ability and the complement probability over all items in a test at selected 
proficiency points. Evaluating the congruence of the CEV of X among the 
assembled tests is important for ensuring the equivalence of conditional 
measurement error at selected proficiency points. 

Average Test Overlap Rate (ATOR)

Test overlap rate is an important factor to consider in ensuring the 
security of test items. In this research, test overlap rate is defined as the 
percentage of items shared by a pair of assembled forms of a fixed length. 
The average test overlap rate between pairs of constructed test forms can 
be obtained by computing the percentage of test overlap for all possible 
pair-wise constructed forms, and then taking the average over all of these 
percentages. 

In this study, ATOR was computed and compared to an expected base-
line test overlap rate, E(BTOR). E(BTOR) is the test-overlap rate when only 
the content constraints are imposed for automated test assembly. 

Distribution of Item Utilization

In computerized adaptive testing (CAT), the exposure rate of an item 
is defined as the percentage of all CAT administrations in which the item 
is included. In automated test assembly, the exposure rate of an item 
refers to the utilization rate of an item, which is defined as the ratio of 
the number of times the item is selected into test forms over the total 
number of assembled test forms. Moreover, the number of times the item 
is selected into test forms could be rephrased as the number of forms in 
which the item appears or “item utilization” in short. 

In this study, the distribution of item utilization was examined to 
evaluate if the ordered-item-pooling control procedure was effective in 
reducing item overexposure and enhancing pool utilization. Over-exposed 
items and un-utilized items would damage test security and the cost effec-
tiveness of the item pool, respectively. The smaller the number of over-
exposed items and un-utilized items or the more even the item-utilization 
distribution, the better the ordered-item-pooling control method per-
forms. In this study, special emphasis was placed on the comparison of 
the no exposure control and the ordered-item-pooling control procedures 
in terms of the maximum item exposure rate and the number of unused 
items.
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Results

Conformity to the Automated-Test-Assembly (ATA) 
Constraints 

In this study, the value of Ωmax was determined such that it would result 
when the average test overlap rate was a minimum and all assembly con-
straints have been satisfied. Therefore, to ensure valid interpretation of the 
results, it is important to first consider the extent to which the imposed 
constraints were fulfilled. Once the automated-test-assembly (ATA) pro-
cess was completed, the constructed tests were evaluated by examining 
the extent to which they satisfied the constraints imposed under each con-
dition. Figures 1–3 (pages 17 and 18) show the information plots for the 
target test and the poorest matching test form generated under test length 
= 60, 90, and 120, respectively. Each figure includes two graphs—the left 
graph (graph I) is plotted for the no exposure control condition while the 
right graph (graph II) is plotted for the exposure control condition. These 
figures show that the information plots for the generated and target tests 
were very similar throughout most regions of the proficiency scale with 
somewhat better conformity to constraints for the no overlap control con-
dition than for the test overlap control condition. When differences in test 
information occurred between the target and generated tests, they were 
negligible in most cases. These deviations were not considered substantial 
enough to invalidate the subsequent results that will be discussed shortly. 
Content constraints were met for all reference tests. Therefore, all assem-
bled test forms produced 100% content parallelism.

Test Equity in Terms of the Resultant  
Psychometric Properties 

In this section, the comparability among alternate forms assem-
bled within each experimental condition on the first and second central 
moments of P(θ), and the error variance of observed test scores is exam-
ined conditionally at selected proficiency points. The corresponding results 
are plotted in Figures 4–21. Similarly, each figure includes two graphs with 
the left graph (graph I) representing the no exposure control condition 
and the right graph (graph II) representing the exposure control condi-
tion. Each graph shows the curves for the 10 test forms created in each 
experimental condition, where smaller variation over the 10 curves indi-
cates a higher degree of equivalence of test forms and vice versa.

The test characteristic function (TCF) or first central moment of P(θ) 
is defined as the average of the conditional correct-response probabili-
ties over all items in a test at selected θ values. Figures 4–9 (pages 24 to 
26) show the test characteristic function (TCF) plot for the 10 test forms 
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created in each experimental condition. The graph at the left hand side 
of each Figure (i.e., graph I) plots the TCFs of the 10 test forms created 
under the no exposure control condition, whereas the graph at the right 
hand side (i.e., graph II) displays the TCFs under the exposure control 
condition. From these figures, the variations among the assembled tests 
occurred in the lower half regions of the proficiency scale (i.e., about θ ≤ 
0.00) of the right graphs (i.e., graphs II), and the TCF variations in the left 
graphs (i.e., graphs I) tended to be smaller than those in the right graphs. 
A general impression conveyed from the plots is that the assembled tests 
without test overlap control were more similar than were the tests with 
test overlap control, given that smaller TCF variation indicates a higher 
degree of equivalence of test forms in TCF and vice versa. These results 
appeared to generalize across the test length (60 vs. 90 vs. 120) and con-
tent (balanced vs. unbalanced) conditions. 

Figure 4:	 Test Characteristic Functions for Balanced Without (I) and With (II) 
Test Overlap Control for 60-Item Tests

Figure 5:	 Test Characteristic Functions for Balanced Without (I) and With (II) 
Test Overlap Control for 90-Item Tests

I: Without Test Overlap Control

I: Without Test Overlap Control

II: With Test Overlap Control

II: With Test Overlap Control
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Figure 6:	 Test Characteristic Functions for Balanced Without (I) and With (II) 
Test Overlap Control for 120-Item Tests

Figure 7:	 Test Characteristic Functions for Unbalanced Without (I) and  
With (II) Test Overlap Control for 60-Item Tests

Figure 8:	 Test Characteristic Functions for Unbalanced Without (I) and  
With (II) Test Overlap Control for 90-Item Tests

I: Without Test Overlap Control

I: Without Test Overlap Control

I: Without Test Overlap Control

II: With Test Overlap Control

II: With Test Overlap Control

II: With Test Overlap Control
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Figure 9:	 Test Characteristic Functions for Unbalanced Without (I) and  
With (II) Test Overlap Control for 120-Item Tests

To provide a further evaluation of differences in TCFs among the assem-
bled tests, the standard deviation (SD) of TCF across the 10 test forms was 
aggregated over all proficiency points in each experimental condition. This 
index provides an indicator of TCF variation aggregated over the entire 
proficiency scale. As shown in Table 5 (page 31), lower aggregated devia-
tions tend to be associated with tests assembled without exposure control 
(range from 0.002 to 0.003), and higher deviations are associated with 
tests generated with exposure control (range from 0.012 to 0.017). These 
findings are consistent with those revealed in the previous TCF plots.

Figures 10–15 (pages 27 to 28) show plots of the square root of the 
second central moment of P(θ), and Figures 16–21 (pages 29 to 30) present 
plots of the conditional error variance of observed test score X (i.e., CEV of 
X) for the 10 test forms created in each experimental condition. Similarly, 
the left hand side of each Figure (i.e., graph I) displays the graph under 
the no exposure control condition, whereas the right hand side (i.e., graph 
II) presents the graph under the exposure control. Greater variation was 
observed for the right graphs. Therefore, the degree of test form equiva-
lence in the second central moment of P(θ) and the CEV of X tended to be 
lower as the test overlap control was imposed. Once again, these results 
appeared to generalize across the test length (60 vs. 90 vs. 120) and con-
tent (balanced vs. unbalanced) conditions.
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Figure 10:	 Square Root of Second Central Moment of P(θ) for 60-Item  
Tests Under Balanced Content Outline Without (I) and With (II)  
Test Overlap Control

Figure 11:	 Square Root of Second Central Moment of P(θ) for 90-Item  
Tests Under Balanced Content Outline Without (I) and With (II)  
Test Overlap Control

Figure 12:	 Square Root of Second Central Moment of P(θ) for 120-Item  
Tests Under Balanced Content Outline Without (I) and With (II)  
Test Overlap Control
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Figure 13:	 Square Root of Second Central Moment of P(θ) for 60-Item  
Tests Under Unbalanced Content Outline Without (I) and With (II)  
Test Overlap Control

Figure 14:	 Square Root of Second Central Moment of P(θ) for 90-Item  
Tests Under Unbalanced Content Outline Without (I) and With (II)  
Test Overlap Control

Figure 15:	 Square Root of Second Central Moment of P(θ) for 120-Item  
Tests Under Unbalanced Content Outline Without (I) and With (II)  
Test Overlap Control
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Figure 16:	 Conditional Error Variance of Observed Test Score (X) for 60-Item 
Tests Under Balanced Content Outline Without (I) and With (II)  
Test Overlap Control

Figure 17:	 Conditional Error Variance of Observed Test Score (X) for 90-Item 
Tests Under Balanced Content Outline Without (I) and With (II)  
Test Overlap Control

Figure 18:	 Conditional Error Variance of Observed Test Score (X) for 120-Item 
Tests Under Balanced Content Outline Without (I) and With (II)  
Test Overlap Control
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Figure 19:	 Conditional Error Variance of Observed Test Score (X) for 60-Item 
Tests Under Unbalanced Content Outline Without (I) and With (II) 
Test Overlap Control

Figure 20:	 Conditional Error Variance of Observed Test Score (X) for 90-Item 
Tests Under Unbalanced Content Outline Without (I) and With (II) 
Test Overlap Control

Figure 21:	 Conditional Error Variance of Observed Test Score (X) for 120-Item 
Tests Under Unbalanced Content Outline Without (I) and With (II) 
Test Overlap Control
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To provide further information about differences in the second central 
moment of P(θ) and in the CEV of X among the assembled tests, the SD 
of the second central moment of P(θ) across the 10 test forms was aggre-
gated across the entire proficiency scale in each experimental condition, 
and the SD of the CEV of X across the 10 test forms was also aggregated 
over the entire proficiency scale in each experimental condition (Table 5). 
Table 5 shows that lower aggregated deviations tend to be associated with 
tests assembled without exposure control (range from 0.003 to 0.005 for 
the second central moment of P(θ); range from 0.079 to 0.162 for the CEV 
of X), and higher deviations are associated with tests generated with expo-
sure control (range from 0.006 to 0.010 for the second central moment of 
P(θ); range from 0.488 to 0.962 for the CEV of X). These findings are con-
sistent to those shown in the previous plots of the second central moment 
of P(θ) and the CEV of X.

This finding indicates that constraining test information does not guar-
antee equivalent levels of test difficulty, variability of item difficulty, and 
error variance of test score, especially when the test overlap control was 
imposed in test assembly. This result most likely occurred because a par-
ticular test information function may result from various combinations of 
item difficulties, and the combinations would be more variable with test 
overlap control. More discussion is given in the Conclusion section.

Table 5:	 Aggregated Deviations Among the Assembled Tests in TCF, the 
Second Central Moment of P(θ), and the CEV of X With Exposure 
Control and Without Exposure Control

TCF
the second central 

moment of P(θ) CEV of X

Content Test Length exp. no exp. exp. no exp. exp. no exp.

Balanced

60 0.016 0.003 0.008 0.005 0.488 0.099

90 0.017 0.003 0.010 0.004 0.772 0.162

120 0.016 0.002 0.009 0.003 0.962 0.162

Unbalanced

60 0.017 0.002 0.007 0.003 0.509 0.079

90 0.015 0.002 0.008 0.004 0.665 0.131

120 0.012 0.002 0.006 0.003 0.708 0.128

Note: exp. = with exposure control; no exp. = without exposure control
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Average Test Overlap Rate 
In this study, the value of Ωmax under each experimental condition was 

determined such that it would result in ten test forms that met all assembly 
constraints and a minimum value for average test overlap rate. The value 
of Ωmax varied with content specification and with the ratio of test length 
to the size of the item pool. Under the balanced content condition, the 
values of Ωmax were 0.10, 0.12, and 0.18 for 60-, 90-, and 120-item tests, 
respectively. Under the unbalanced content condition, the values of Ωmax 
were 0.16, 0.22, and 0.34 for 60-, 90-, and 120-item tests, respectively. 
Specifically, the unbalanced content condition yielded target maximum 
expected test overlap rate, Ωmax, larger than the expected baseline test 
overlap rate, E(BTOR), for 90- and 120-item tests. On the other hand, the 
balanced content condition generated Ωmax smaller than E(BTOR) for all 
test lengths. 

Table 6: 	 Summary of Item Usage and Test Overlap Rate for Balanced  
Content Condition

Ratio = 0.1 = 60/600 Ratio = 0.15 = 90/600 Ratio = 0.2 = 120/600

# of Test 
Forms No Control Ωmax = 0.10 No Control Ωmax = 0.12 No Control Ωmax = 0.18

0 423 (70.50%) 227 (37.83%) 355 (59.17%) 123 (20.50%) 332 (55.33%) 104 (17.33%)

1 61 (10.17%) 146 (24.33%) 75 (12.50%) 54 (9.00%) 68 (11.33%) 26 (4.33%)

2 29 (4.83%) 227 (37.83%) 47 (7.83%) 423 (70.50%) 35 (5.83%) 236 (39.33%)

3 23 (3.83%) 0 (0.00%) 22 (3.67%) 0 (0.00%) 28 (4.67%) 234 (39.00%)

4 21 (3.50%) 0 (0.00%) 21 (3.50%) 0 (0.00%) 19 (3.17%) 0 (0.00%)

5 6 (1.00%) 0 (0.00%) 16 (2.67%) 0 (0.00%) 19 (3.17%) 0 (0.00%)

6 8 (1.33%) 0 (0.00%) 20 (3.33%) 0 (0.00%) 18 (3.00%) 0 (0.00%)

7 7 (1.17% ) 0 (0.00%) 10 (1.67%) 0 (0.00%) 21 (3.50%) 0 (0.00%)

8 7 (1.17% ) 0 (0.00%) 10 (1.67%) 0 (0.00%) 16 (2.67%) 0 (0.00%)

9 5 (0.83% ) 0 (0.00%) 9 (1.50%) 0 (0.00%) 16 (2.67%) 0 (0.00%)

10 10 (1.67% ) 0 (0.00%) 15 (2.50%) 0 (0.00%) 28 (4.67%) 0 (0.00%)

Max Exp 1 0.2 1 0.2 1 0.3

ATOR 0.510 0.084 0.540 0.104 0.633 0.174

E(BTOR) 0.100 0.100 0.150 0.150 0.200 0.200

ATOR– 
E(BTOR) 0.410 –0.016 0.390 –0.046 0.433 –0.026

Note: ratio = ratio of test length to item-pool  size; Max Exp = maximum item exposure rate.
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Comparisons of ATOR and E(BTOR) are important in evaluating ATA 
methods because a large difference between ATOR and E(BTOR) would 
signal a possible problem in test security resulting from an unacceptable 
overlap in items among the generated test forms. Tables 6–7 (pages 32 to 
33) report ATOR and E(BTOR) for each experimental condition. Taken as a 
whole, the results indicate that all no-exposure-control conditions yielded 
unacceptable test overlap rates. ATOR values ranged from 0.510 to 0.633 
for the balanced content condition and 0.541 to 0.700 for the unbalanced 
content condition, and differences between ATOR and E(BTOR) ranged 
from 0.390 to 0.433 for the balanced content condition and 0.411 to 0.441 
for the unbalanced content condition. 

Table 7:	 Summary of Item Usage and Test Overlap Rate for Unbalanced 
Content Condition

Ratio = 0.1 = 60/600 Ratio = 0.15 = 90/600 Ratio = 0.2 = 120/600

# of Test 
Forms No Control Ωmax = 0.10 No Control Ωmax = 0.12 No Control Ωmax = 0.18

0 443 (73.83%) 295 (49.17 %) 392 (65.33%) 239 (39.83%) 361 (60.17%) 230 (38.33%)

1 47 (7.83%) 67 (11.17 %) 60 (10.00%) 73 (12.17%) 52 (8.67%) 74 (12.33%)

2 21 (3.50%) 181 (30.17 %) 29 (4.83%) 114 (19.00%) 30 (5.00%) 55 (9.17%)

3 17 (2.83%) 57 (9.50 %) 14 (2.33%) 97 (16.17%) 23 (3.83%) 53 (8.83% )

4 17 (2.83%) 0 (0.00%) 19 (3.17%) 77 (12.83%) 15 (2.50%) 83 (13.83%)

5 13 (2.17%) 0 (0.00%) 12 (2.00%) 0 (0.00%) 17 (2.83%) 105 (17.50%)

6 12 (2.00%) 0 (0.00%) 12 (2.00%) 0 (0.00%) 14 (2.33%) 0 (0.00%)

7 8 (1.33%) 0 (0.00%) 17 (2.83%) 0 (0.00%) 17 (2.83%) 0 (0.00%)

8 8 (1.33%) 0 (0.00%) 12 (2.00%) 0 (0.00%) 12 (2.00%) 0 (0.00%)

9 5 (0.83%) 0 (0.00%) 13 (2.17%) 0 (0.00%) 15 (2.50%) 0 (0.00%)

10 9 (1.50%) 0 (0.00%) 20 (3.33%) 0 (0.00%) 44 (7.33%) 0 (0.00%)

Max Exp 1 0.2 1 0.2 1 0.3

ATOR 0.541 0.130 0.629 0.214 0.700 0.326

E(BTOR) 0.130 0.130 0.194 0.194 0.259 0.259

ATOR– 
E(BTOR) 0.411 0 0.435 0.020 0.441 0.067

Note: ratio = ratio of test length to item-pool  size; Max Exp = maximum item exposure rate.
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The use of the ordered-item-pooling control procedure to find the item 
allocation with the smallest average test-overlap rate (ATOR) with all test-
assembly constraints satisfied reduced, on the average, the value of ATOR 
by 0.44 (i.e., [(0.510 – 0.084) + (0.54 – 0.104) + (0.633 – 0.174)] ÷ 3) for 
the balanced content condition and by 0.4 (i.e., [(0.541 – 0.13) + (0.629 – 
0.214) + (0.7 – 0.326)] ÷ 3) for the balanced content condition. Moreover, 
acceptable overlap rates were found for all test-length conditions under 
the balanced content condition because all ATOR values were less than 
the corresponding E(BTOR) values. For the unbalanced content condi-
tion, acceptable overlap rates were found only for the 60-item condition 
whereas the 90- and 120-item conditions generated unacceptable overlap 
rates even with test overlap control. These 90- and 120-item conditions 
had resultant ATORs greater than their E(BTOR). The reason for this is 
because the 90- and 120-item conditions had target test overlap rates (or 
maximum expected test overlap rates, Ωmax) larger than the corresponding 
E(BTOR) values to begin with, which were 0.22 > 0.194 for the 90-item 
condition and 0.34 > 0.259 for the 120-item condition. 

Distribution of Item Utilization
Table 6 (page 32) shows the distribution of item utilization without 

exposure control in the 2nd, 4th, and 6th columns, while the distribution 
of item utilization with exposure control is shown in the 3rd, 5th, and 7th 
columns for ratio = 0.1, 0.15, and 0.2, respectively, under the balanced 
content condition. Table 7 (page 33) provides the corresponding results 
under the unbalanced content condition. Take Ratio = 0.1 under the bal-
anced content condition as an example (Table 6), the second column lists 
the number of items that appeared on 0, 1, 2, 3, … , 10 forms without 
exposure control, showing that the number of items that appeared on all 
ten forms was 10 while the number of items that never appeared on a 
single form was 423. The third column of Table 6 lists the number of items 
that appeared on 0, 1, 2, 3, … , 10 forms with exposure control, showing 
that the use of the ordered-item-pooling control reduced the number of 
items appearing on all ten forms from 10 to 0 while reducing the number 
of items never appearing on a single form from 423 to 227. These findings 
appear to generalize across the test-length (ratio = 0.1 vs. 0.15 vs. 0.2) and 
content (balanced vs. unbalanced) conditions.

Based on the distribution of item utilization shown in Tables 6–7, this 
research placed special emphasis on the maximum item exposure rate and 
the number of unused items to compare the no exposure control and the 
ordered-item-pooling control procedures. The maximum item exposure 
rate was computed by dividing the maximum number of forms that an 
item has appeared on by the number of forms to be assembled (i.e., 10). 
Tables 6–7 reveal that the maximum item exposure rate and the number 



Controlling Test Overlap Rate� Lin

35

J·T·L·A

of unused items decrease substantially when the ordered-item-pooling 
control procedure was implemented. Take ratio = 0.1 under the balanced 
content condition as an example, when using the ordered-item-pooling 
control procedure, the maximum item exposure rate reduced from 1 to 0.2, 
and the number of unused items decreased from 423 to 227. This phenom-
enon was supported by smaller skewness and range (i.e., maximum-min-
imum) shown in Tables 8–9, indicating that the item exposure distribution 
became less skewed and more even when the ordered-item-pooling control 
was applied. These results generalized across the test length and content 
conditions. 

Table 8:	 Item Usage (or Exposure) Distribution for the Item Pool Under 
Balanced Content Condition

Ratio N Max Min Range Skewness Mean SD

Control

0.1 600 0.2 0 0.2 0.000 0.10 0.087

0.15 600 0.2 0 0.2 –1.150 0.15 0.081

0.2 600 0.3 0 0.3 –0.872 0.20 0.106

No
Control

0.1 600 1.0 0 1.0 2.634 0.10 0.214

0.15 600 1.0 0 1.0 1.909 0.15 0.256

0.2 600 1.0 0 1.0 1.452 0.20 0.307

Note: ratio = ratio of test length to item-pool  size.

Table 9:	 Item Usage (or Exposure) Distribution for the Item Pool Under 
Unbalanced Content Condition

Ratio N Max Min Range Skewness Mean SD

Control

0.1 600 0.3 0 0.3 0.450 0.10 0.108

0.15 600 0.4 0 0.4 0.389 0.15 0.146

0.2 600 0.5 0 0.5 0.359 0.20 0.197

No
Control

0.1 600 1.0 0 1.0 2.503 0.10 0.221

0.15 600 1.0 0 1.0 1.904 0.15 0.278

0.2 600 1.0 0 1.0 1.497 0.20 0.326

Note: ratio = ratio of test length to item-pool  size.

Although the ordered-item-pooling control procedure noticeably low-
ered the maximum item exposure rate, maximum item exposure rates were 
not acceptable for all conditions. For the balanced content condition, the 
ordered-item-pooling control procedure yielded acceptable maximum item 
exposure rates for all test length conditions with rmax values no greater 
than 0.3. For the unbalanced content condition, an acceptable maximum 
item exposure rate was found for the 60-item condition with rmax = 0.3, 
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whereas unacceptable maximum item exposure rates were found for the 
90- and 120-item conditions with rmax = 0.4 and 0.5, respectively. This phe-
nomenon indicated that additional control on item exposure rates may 
be necessary to guarantee an acceptable maximum item exposure rate in 
the less supportive or more difficult situation for ATA, referring to greater 
ratios of test length to pool size (i.e., 90/600 = 0.15 and 120/600 = 0.2) 
and an unbalanced content condition in the study.

Tables 6–7 (pages 32 to 33) also show that when no exposure con-
trol was implemented, the unbalanced content condition yielded a larger 
number of items that appeared on all ten forms than the balanced con-
tent condition, and the number of items that appeared on all ten forms 
increased as the ratio of test length to pool size increased. This occurred 
because the unbalanced content condition and the larger ratio of test 
length to pool size represent difficult test-assembly conditions, where the 
content properties of a target reference form differ from those of the pool 
and more items are required to be selected into a test form. As a result, 
a larger percentage of items may be shared by alternate test forms if the 
item-exposure rate is not controlled under more difficult test-assembly 
conditions. Specifically, test security breach becomes more serious when 
test-assembly conditions become more difficult due to the unbalanced 
content condition and greater ratio of test length to pool size. When the 
ordered-item-pooling control procedure was implemented, a greater reduc-
tion in the number of unused items was observed in the balanced content 
condition (423 – 227 = 196 in the balanced condition vs. 443 – 295 = 148 
in the unbalanced condition for ratio = 0.1). Note that the magnitude of 
the reduction was similar over all test-length conditions.

Conclusion
Assembling equivalent test forms with minimal test overlap across 

forms is important in ensuring test security. In ATA, an exposure con-
trol method would need to demonstrate its effectiveness by achieving an 
acceptable average test overlap rate across multiple forms without com-
promising the conformity to the test-assembly constraints and the test 
equity of the assembled forms. The ordered-item-pooling control proce-
dure met this standard by first showing that the content constraints were 
met exactly and the conformity of psychometric constraints was accept-
able for all test forms assembled under its test overlap control. However, 
the degree of test equity in terms of the first central moment of P(θ) (i.e., 
TCF), the square root of second central moment of P(θ), and the condi-
tional error variance of observed test score X (i.e., CEV of X), generated 
under the ordered-item-pooling control procedure was less than that 
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yielded under the no test overlap control procedure. The important mes-
sage from this finding for those resultant psychometric properties is that 
constraining test information does not guarantee equivalent levels of test 
difficulty, variability of item difficulty, and error variance of test score, 
especially when the test overlap control was imposed in test assembly. This 
result seems reasonable given that a particular test information function 
could result from various combinations of item difficulties, and the com-
binations would be more variable with test overlap control. Accordingly, 
compared to the no exposure control condition, the TCF plots under test 
overlap control showed greater variation among the assembled tests espe-
cially in the lower half of the proficiency scale. Moreover, to ensure test 
equity in difficulty level, test difficulty may be constrained additionally in 
the test overlap control condition. However, if test difficulty is added as 
a test-assembly constraint, other content and psychometric constraints 
may need to be sacrificed to meet that constraint. 

Average test overlap rate is defined as acceptable when the resul-
tant average test overlap rate is smaller than the expected baseline test 
overlap rate, E(BTOR). The results showed that the average test overlap 
rates (ATOR) were unacceptably high for all tests assembled with the no 
test overlap control procedure. When the ordered-item-pooling control 
method was implemented, the average test overlap rate decreased sub-
stantially from the no test overlap control condition. This result gener-
alized across test length and content conditions. However, acceptable 
overlap rates were found only with the tests for the balanced content con-
dition and with the 60-item tests for the unbalanced content condition. 
The average test overlap rates of the 90-item and 120-item tests generated 
with the ordered-item-pooling control were still greater than the corre-
sponding E(BTOR). 

For the ordered-item-pooling control procedure, a maximum expected 
test overlap rate (i.e., Ωmax) is first established. In evaluating the results from 
the ordered-item-pooling control procedure, it should be noted that this 
study selects, under each condition, the maximum expected test overlap 
rate (i.e., Ωmax) that results when the average test overlap rate (i.e., ATOR) 
is a minimum and ten test forms have met all assembly constraints. The 
90- and 120-item tests with the unbalanced content conditions had unac-
ceptable ATORs because they had  values larger than the corresponding 
E(BTOR) values to begin with. The high overlap rates for the 90-item and 
120-item tests with the unbalanced content specification suggest that the 
overlap rate would need to be further controlled with some additional con-
straints in those conditions to ensure adequate test security. However, if 
stringent control is included as a test-assembly constraint, other content 
and psychometric constraints may need to be sacrificed to meet that con-
straint. Moreover, the conditions of a large ratio of test length to item pool 
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size and test content specification not mirroring the content distribution 
of the item pool represent poorly supportive situations for automated test 
assembly. There might be situations in which the ratio of test length to 
item pool size is so large and the test content specification is so unbal-
anced that unacceptable test overlap is produced for all ATA approaches 
with any exposure control technique. The tradeoff between ensuring test 
parallelism and controlling test overlap rate (and/or item exposure rate) 
may need to be evaluated by testing specialists and practical criteria for 
test assembly, administration, and use.

Similarly to the results for average test overlap rate, the maximum 
item exposure rate equaled 1.0 when test overlap rate control was not 
implemented whereas the maximum item exposure rate decreased sub-
stantially as the ordered-item-pooling control was applied. Additionally, 
the ordered-item-pooling control procedure yielded fewer numbers of 
unused items than the no test overlap control procedure. It is particularly 
noteworthy that greater reduction in maximum item exposure rate and 
number of unused items was associated with the balanced content condi-
tion. Moreover, under the balanced content situation, the maximum item 
exposure rate decreased from 1 to 0.2 for the 60-item and 90-item tests 
and from 1 to 0.3 for the 120-item test. However, under the unbalanced 
content condition, the ordered-item-pooling control procedure yielded 
acceptable maximum item exposure rate (i.e., 0.2) for the 60-item tests, 
but not for the 90-item and 120-item tests (i.e., 0.4 and 0.5, respectively). 
These unacceptable maximum item exposure rates likely also occurred due 
to higher maximum expected test overlap rates, Ωmax, and poorly sup-
portive situations for automated test assembly.

Taken together, this study showed that the ordered-item-pooling 
control procedure appeared to be an effective method in controlling test 
overlap rate and item exposure rate in most cases. However, it yielded an 
unacceptable average test overlap rate and maximum item exposure rate 
in a less supportive situation for ATA, referring to greater ratios of test 
length to pool size (i.e., 90/600 = 0.15 and 120/600 = 0.2) and the unbal-
anced content condition in the study. Accordingly, controlling test overlap 
rate in ATA may not guarantee acceptable maximum item exposure rate 
when the ratio of test length to pool size is large enough (i.e., 0.15 in the 
study) under the unbalanced content condition.

The average test overlap rates for the test-length-to-pool-size ratios 
of 0.15 and 0.2 with the unbalanced content specification were greater 
than the corresponding E(BTOR) as the ordered-item-pooling control was 
conducted, but the deviations were not substantial (0.02 for the 90-item 
tests and 0.067 for the 120-item tests). The maximum item exposure rates 
were unacceptable under these situations. These results indicated that the 
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ordered-item-pooling control procedure needs to be incorporated with 
additional constraints to produce acceptable average test overlap rates and 
maximum item exposure rates in the less supportive contexts for ATA.

The outcomes of the study provide a better understanding of how 
well the ordered-item-pooling control method functions in automated 
assembly of multiple forms under various experimental conditions, and 
are expected to lay the foundation for future research on development of 
procedures to ensure test security in ATA.

Limitations
When considering the results of this study, several limitations should 

be kept in mind. First, the generalizability of the results to practical con-
texts is limited. The content specifications in this study were set up so that 
complex confounding effects of content specifications and item difficulty 
would not affect the outcomes. In many realistic test situations, content 
categories are likely to differ in difficulty. In addition, the number of con-
straints imposed in some realistic testing situations may be much greater 
than those imposed in the present study. Simplifying the research situa-
tions in this study makes it difficult to generalize the outcomes to more 
realistic testing situations, such as those in which numerous test-assembly 
constraints are imposed or there is a complex confounding relationship 
between content specification and item difficulty.

Second, the statistics for items in the pool used in this study were 
assumed to be representative of examinees’ performance on operational 
test forms and free from context effects (e.g., subject motivation, item 
location). More realistic item pools may not fulfill those assumptions when 
a testing program migrates from paper/pencil to computer-based testing 
administration modes. 

Third, the item pool used in this study was predominantly of medium 
difficulty and therefore unsuitable for certain testing situations. In con-
texts involving employment promotion or screening out unqualified can-
didates, for example, a greater number of items with varying degrees of 
difficulty may be needed to yield acceptable ATORs. This study did not 
focus on how well the ordered-item-pooling control method would per-
form under these conditions.

Finally, the use of ATA techniques represents only part of the complete 
test assembly process. Tests assembled by ATA techniques still need to be 
evaluated by testing specialists to ensure that the assembled forms meet 
desired psychometric, non-psychometric, and practical criteria for test 
assembly, administration, and use.
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Suggestions for Future Research 
The most important finding from this study is that the ordered-item-

pooling control procedure appeared to be an effective method in control-
ling test overlap rate and item exposure rate in most cases. However, the 
study leaves several questions unanswered that could form the basis for 
future investigations. One essential question to be answered is how well 
the ordered-item-pooling control procedure performs under different and 
more realistic conditions. These conditions might include assembling alter-
nate test forms: (a) when item pools have different distributions of item 
difficulty, (b) when test overlap is completely disallowed or constrained to 
be very low, (c) when content categories are greater in number and vary in 
difficulty, and (d) when test speediness and item location effects need to 
be addressed. 

Another important unanswered question is whether the ordered-item-
pooling control procedure can be improved to produce acceptable average 
test overlap rate and maximum item exposure rate in a less supportive sit-
uation for ATA. One possible way to address this question is to incorporate 
the ordered-item-pooling control method with the item exposure control 
procedure. The new method could be evaluated under the same conditions 
examined here or under the conditions suggested above.

A third unanswered question is how well the ordered-item-pooling con-
trol procedure or this procedure along with item exposure control would 
perform compared to other exposure control methods (e.g., the a-strati-
fied method proposed by Chang and Ying (1999); the Sympson and Hetter 
(SH) procedure (1985)). Such a study could be conducted under the same 
conditions examined here or under the conditions suggested above.

Finally, studies might be conducted to assess the effectiveness of the 
ordered-item-pooling control procedure while imposing different psycho-
metric constraints on test assembly (e.g., a target test information func-
tion and a target characteristic function could be imposed to produce 
alternate forms having identical conditional error variances and condi-
tional true scores). 
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