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Abstract:

An online interactive geometry item was developed to explore students’ abilities to create 
prototypical and “tilted” rectangles out of line segments. The item was administered 
to 1,002 students. The responses to the item were hand-coded as correct, incorrect, or 
incorrect with possible evidence of a misconception. A variation of the nearest neighbor 
algorithm was used to automatically predict one of these categories for each of the stu-
dent responses. The predicted category was compared to the hand-coded category. The 
algorithm accurately predicted the category for 94.6% of responses.
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Introduction
Formative assessment is an integral component of the instructional 

process, and classroom instruction should be tailored based on information 
provided by formative assessments. Popham defined two critical charac-
teristics of formative assessment: 1) formative assessment results should 
be available to teachers during instruction so that the results can inform 
changes to instructional approaches; and 2) changes to instruction based 
on assessment results should be made “with the intent of better meeting 
the needs of the students assessed” (2006, p. 4). The simplest approach to 
fulfilling the first criteria of returning timely feedback is through assess-
ments composed of closed-response items, such as traditional multiple 
choice items. While these types of items allow assessment results to be 
immediately considered when modifying instructional approaches, the 
depth of information provided is often limited. Open-response or con-
structed-response items typically provide richer information, but the 
scoring of these items is time-intensive, and, thus, often results cannot be 
instantly integrated into classroom practice. In recent years, efforts have 
been made to leverage technological advancements to automatically score 
open-response items, or items of a more interactive nature.

The bulk of these research efforts have been in the domain of auto-
mated essay scoring, but other efforts have also been made in automated 
scoring of open-response mathematics items. Concurrently, innovative 
and interactive technologies have emerged, such as Geometer’s Sketchpad, 
allowing students to virtually interact with mathematical concepts, spe-
cifically in the area of geometry. The research presented in this paper seeks 
to combine interactive technology with automated scoring, in the context 
of geometry in the middle grades. This paper is a proof-of-concept that an 
interactive geometry item can be automatically scored to return instant 
feedback to teachers, thus informing instruction. 
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The interactive item described in this paper was developed as part of 
the Diagnostic Geometry Assessment (DGA) project, which applies find-
ings from cognitive research on mathematical misconceptions to create 
online, formative, diagnostic assessments that classroom teachers can use 
to identify and address student misconceptions. The DGA is based on the 
previous successes of the similar Diagnostic Algebra Assessment project 
(Russell, O’Dwyer & Miranda, 2009), uses traditional closed-response 
items, and focuses on three geometric misconceptions. As part of the DGA 
development process, open-response items were created and administered 
to a large sample of students. The purpose of collecting these written 
responses was to develop closed-response distracter options representa-
tive of the correct and flawed understandings exhibited. A subset of the 
open-response items were online, interactive items.

The interactive items were initially developed for the same purpose as 
the paper-based open-response items, and were intended solely to collect 
student responses on which to base closed-response options. However, 
after the items were developed and administered, it became clear that the 
interactive nature of the items had great potential to engage students, 
elicit underlying student thought processes, and allow teachers to review 
students’ interactions, thus allowing teachers to explore students’ thought 
processes. While this capability alone has great potential, the items would 
provide even richer feedback if they were able to be automatically scored. 
If this were possible, a set of items could provide instant feedback, and 
also allow teachers to further explore the thought processes of individual 
students. To this end, the current paper describes the creation of an auto-
mated scoring algorithm for one of these interactive items, as a proof-of-
concept that it is possible to automatically score this type of interactive 
item. A screenshot of the item discussed in this paper is displayed in 
Figure 1. In this item, students can move line segments to form shapes 
and explain their reasoning about the shapes they create.
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Figure 1:	 Screen Shot of the Interactive Item

Related Work
The current work relies on related research in two fields. The interac-

tive item described in this paper was designed based on a cognitive frame-
work describing students’ understanding of geometric concepts. The 
automatic scoring of the item is grounded in research in the area of auto-
mated scoring.

The DGA and the Shape Properties Misconception
The DGA focuses on three misconceptions, encompassing both flawed 

and underdeveloped reasoning. The misconception targeted with the inter-
active item discussed in this paper is referred to as the Shape Properties 
misconception. The difficulties that students experience related to this mis-
conception stem from students having developed a concept image without 
a concept definition. As Vinner and Hershkowitz describe, a concept image 
is a mental image that students have of a shape, without a specified defini-
tion of the shape or its properties (1980). Students who have this deficit of 
understanding can often identify examples of shapes, but will fail to iden-
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tify examples of shapes that are not identical to their own mental image 
of the shape or the shape prototype, i.e., the figure does not “look like” the 
shape. Characteristics such as orientation and proportion affect whether 
students recognize certain shapes, despite the fact that these character-
istics are irrelevant to the defining properties of a shape (Carroll, 1998; 
Clements, 2003; Clements & Battista, 1992). Table 1 shows examples of 
possible shape prototypes, as well as samples of figures that might not be 
recognized as the shape by a student operating under this misconception. 
For example, the prototypical parallelogram is slanted towards the right, 
and the top and bottom sides are longer than the left and right sides. Thus, 
a student operating under this misconception might not recognize a figure 
with right angles, or equal sides, as a parallelogram, even if the figure is a 
four-sided figure with parallel opposite sides (the definition of a parallelo-
gram). Rather than rely solely on mental or visual images, students should 
have both a set of visual examples and a description of the necessary and 
sufficient properties that define a shape (Hershkowitz, 1989). Instruction 
can help students move towards this understanding.

Table 1:	 Sample Shapes and Prototypes

Shape Shape Prototype Figures Possibly not Recognized when Reasoning with a 
Concept Image and not a Concept Definition

Parallelogram

Rectangle

Square

Rhombus
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In the context of the DGA, the term misconception is used broadly to 
refer to any systematic source of difficulty experienced by students. Thus, 
the Shape Properties misconception described here can be contextualized 
as underdeveloped reasoning, displayed by students who first understand 
shapes as visual images, and then progress towards deeper understandings. 
The misconception can also be contextualized as a flawed understanding 
by students who have received instruction intended to develop concept 
definitions, and yet their understanding persists at the level of concept 
images. In either case, new knowledge and instruction related to shapes 
(e.g., congruence, similarity, etc.) will be best integrated when it aligns with 
existing networks of knowledge; thus students operating with flawed or 
underdeveloped understanding will likely create their own interpretations 
and connections of new information, which can lead to systematic errors 
(Hiebert & Carpenter, 1992; Mestre, 1987; Resnick, 1983). If teachers are 
aware of misconceptions and can recognize patterns of systematic errors, 
they can use this information to design targeted instruction to support 
students in refining and reorganizing their knowledge structures (Resnick 
et al., 1989; Smith, diSessa, & Roschelle, 1993).

This view of evaluating and addressing misconceptions is the under-
lying foundation of the DGA, which seeks to provide a formative assess-
ment that identifies students operating under misconceptions (including 
the Shape Properties misconception). The DGA also contains lesson plans 
and activities targeting the misconceptions, providing an integrated system 
of diagnostic feedback and instructional resources. The DGA classifies stu-
dents as operating under a misconception based on the results of a group 
of items, not on a single item. Thus, if the interactive item described here 
were able to be automatically scored, it could be combined with a group of 
other items targeting the Shape Properties misconception, and a student’s 
response to this set of items would be considered when providing diag-
nostic feedback to teachers.

The interactive item that is the focus of this paper (displayed in Figure 
1, page 6) seeks to explore the Shape Properties misconception by allowing 
students to create rectangles out of existing line segments. Some line seg-
ments allow students to form the prototypical rectangle (top and bottom 
sides longer than the left and right sides, top and bottom sides aligned 
with the bottom of the paper/screen), while others segments can form a 
“tilted” rectangle, oriented at an angle. The motivation for creating this 
item was that a student operating under the Shape Properties misconcep-
tion would likely not create the tilted rectangle.

It should be noted that the DGA is still in the development stages, 
and thus has not yet undergone validity testing or psychometric analysis. 
It is not the purpose of the current paper to validate that the interactive 
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item appropriately measures the targeted construct, or explore how the 
interactive item operates within a larger set of closed-response items. The 
current paper only seeks to determine whether the interactive item can be 
automatically scored using the existing data collected through the DGA 
project. The description of the DGA is included here to provide the context 
under which the interactive item was developed and the data collected. If 
automatic scoring is feasible on this and other interactive items, future 
research will explore the implications of integrating these types of interac-
tive items with traditional closed-response items into a formative assess-
ment framework.

Automated Scoring
The DGA project is grounded in the belief that student assessment is 

a central component of the instructional process, and classroom instruc-
tion should be tailored and individualized based on information pro-
vided by formative assessments (Airasian, 1991; Black & Wiliam, 1998a, 
1998b; Popham, 1995, 2006, 2008). To be effective at informing instruc-
tion, assessments must return timely feedback to teachers. Thus, research 
efforts have been made to automatically score items that provide richer 
feedback, such as open-response items.

The majority of research in automatic scoring has been in the domain 
of automated essay scoring (AES), as evidenced by commercial products 
such as Project Essay Grade, IntelliMetric, the Intelligent Essay Assessor, 
and e-rater. AES systems have been designed for use in classroom assess-
ments and high-stakes standardized assessments (Shermis & Burstein, 
2003; Dikli, 2006). Studies evaluating the accuracy of AES systems have 
found generally high agreement between automated and human scoring, 
often higher than the agreement between inter-human scoring. Critics 
remain concerned about the formulaic approaches of these systems, the 
emphasis placed on essay constructs rather content (e.g., length rather 
than meaning), and the vulnerability of the systems to cheating. Further, 
automatic scoring of essays requires an existing cache of essays on which 
to train an algorithm, which is problematic for individual essay prompts 
designed in the classroom (Attali & Burstein, 2006; Ben-Simon & Bennett, 
2007; Burstein & Chodorow, 1999; Dikli, 2006; Nichols, 2005; Page, 2003; 
Page & Petersen, 1995; Rudner, Garcia, & Welch, 2006; Rudner, & Gagne, 
2001; Rudner & Liang, 2002; Valenti, Neri, & Cucchiarelli, 2003; Wang & 
Brown, 2007).

A smaller base of research has explored automatic scoring of open-
response mathematics items. The primary focus of this research has been 
on dichotomously and diagnostically assessing mathematical expressions, 
e.g., formulas, algebraic expressions, and rational expressions, mainly 



Automated Scoring of an Interactive Geometry Item� Masters

10

J·T·L·A

at the undergraduate and graduate level (Bennett, Morley, & Quardt, 
2000b; Bennett & Sebrechts, 1994; Bennett, Steffen, Singley, Morley, & 
Jacquemin, 1997; Chan & Yeung, 2000a, 2000b; Sangwin, 2004; Sebrechts, 
Bennett, & Rock, 1991; Singley & Bennett, 1998). Bennett et al. presented 
the following example of an item requiring a mathematical expression as 
a response: “If 12 eggs cost x cents and 20 slices of bacon cost y cents, 
what is the cost in cents of 2 eggs and 4 slices of bacon?” (2000b, p.298). 
Computer-based interfaces allow the respondent to input only allowable 
combinations of symbols. Once the expression is entered, the scoring algo-
rithm compares the response to the correct expression. Because expres-
sions have an infinite number of equivalent forms, evaluating equivalency 
is a key component of these algorithms (Bennett, Steffen, Singley, Morley, 
& Jacquemin, 1997; Bennett, Morley, & Quardt, 2000b). Algorithms that 
automatically score mathematical expressions have been highly successful 
when compared to human scoring. Bennett et al. found an accuracy rate 
of 99.62% when comparing automated scoring to human scoring of math-
ematical expressions on a graduate admissions exam (1997).

More recent research has expanded the focus to the automatic scoring 
of quantitative and qualitative graphs, where respondents enter points, 
lines, and curves onto a graph (Bennett, Morley, & Quardt, 2000a). Bennett 
et al. presents the following two examples of items requiring a graphical 
response: “Suppose you are driving at a constant speed from New York to 
Washington, D.C., about 200 miles away. About 80 miles from New York 
you pass through Philadelphia, Pennsylvania. On the grid below, plot your 
distance from Philadelphia as a function of time from the beginning to the 
end of the trip.” and “On the grid below, draw a triangle that has an area 
equal to 6 units.” (2000b, p. 304, ©Education Testing Service). One auto-
mated scoring method developed for this type of item had a 98% agree-
ment rate with human scorers when evaluated in the context of graduate 
admissions; further, the discrepancies in agreement were due to errors in 
the human, rather than the automated, scoring (ibid). This research pro-
vides a basis that automated scoring of open-response mathematics items 
is feasible. The current work seeks to expand this base by focusing on the 
subject area of geometry (beyond graphical modeling) and by focusing on 
a younger population (sixth, seventh, and eighth grade students).
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Methods
As part of the DGA development process, paper-based open-response 

items and online interactive items, including the item in Figure 1 (page 
6), were administered to students. The purpose of the item administra-
tion was to collect student responses for developing closed-response dis-
tracters for the DGA. The research described in this paper used this extant 
data to develop and evaluate an automated scoring approach to one inter-
active item.

Participants
There were 1,002 student responses collected to the interactive item. 

These students were in the classes of 24 participating teachers. Fifty-six 
percent of students were in eighth grade, 32% in seventh grade, and 11% 
in sixth grade. The teachers volunteered to participate in the DGA develop-
ment process, and thus were not recruited to mirror, and are not assumed 
to be, a representative sample of the general teaching population.

Ninety-six percent of teachers identified themselves as White, and 
4% of teachers identified themselves as Asian. Sixty-eight percent of stu-
dents identified themselves as White, 8% as Black/African American, 7% 
as American Indian/Alaskan Native, and 4% as Asian. Sixteen percent of 
students identified themselves as Hispanic/Latino1. Seventy-one percent 
of participating teachers were female; 49% of participating students were 
female.

The majority of participating teachers (54%) resided in the South, with 
some teachers residing in each of the other regions (21% in the Northeast, 
13% in the Midwest, and 13% in the West).2 The large percentage of 
teachers from the South is likely a result of the researchers’ past experi-
ence with projects and teachers from this region. The largest percentage of 
participating teachers taught in town locales (37%), with some teachers 
teaching at other locales (26% suburban, 26% rural, and 11% city).3

Seventy-five percent of participating teachers had been teaching for 
six years or more, while 25% had been teaching for five years or less. 
When asked about teaching mathematics specifically, 67% of teachers had 
taught for six years or more, 33% for five years or less. Forty-six percent 
of teachers had been teaching at their current school for six years or more, 
54% for five years or less. Sixty-seven percent of teachers held a Masters 
degree as their highest level of education, while 29% held a Bachelors 
degree. Ninety-two percent of teachers held a regular or standard state 
certificate, 4% held a provisional certificate, and 4% held no certification.

Thirty-eight percent of teachers taught at schools that received Title 
I funding. Teachers also self-reported the percentage of their students 
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that received free/reduced lunch. The largest percentage of teachers (33%) 
responded that 26-50% of their students received free/reduced lunch; 
30% of teachers responded that 0-25% of students received free/reduced 
lunch, 25% of teachers responded that 76-100% of students received free/
reduced lunch, and 13% responded that 51-75% of students received free/
reduced lunch. Eighty-nine percent of students responded that they spoke 
English as their first language. Finally, 92% of students responded that 
they had a computer in their home, and 94% of students responded that 
they used a computer generally either every day or a couple of times a 
week. Students reported less frequent use in school: 69% responded that 
they used a computer in school every day or a couple of times a week, 25% 
responded a couple of times a year.

Procedure
The responses to the interactive item were independently hand-coded 

by two researchers. An automated algorithm to predict codes was devel-
oped and tested, using the hand-coded scores as a comparison for the pre-
dicted scores.

Coding Student Responses

A coding rubric was created for each of the items administered for 
the DGA development, including the interactive item described here. 
Each rubric attempted to distinguish responses that were representative 
of a student with a strong understanding of the construct, a knower, a 
student possibly operating under the targeted misconception, a miscon-
ceiver, or a student who displayed neither evidence of understanding nor 
of misconception, a mistaker. To be classified as a knower, a student had 
to provide a correct and thorough response. For the interactive item, a 
correct and thorough response was defined as a response satisfying three 
criteria: 1) at least one prototypical rectangle was created, 2) the non-
prototypical or “tilted” rectangle was created, and 3) the number of rect-
angles the student reported creating matched the number of rectangles 
actually created.4 Figure 2 shows two sample student responses that were 
coded as knowers. Figure 2(a) (next page) shows the most common stu-
dent response, in which students created the prototypical rectangle, the 
tilted rectangle, and indicated that they created two rectangles. Figure 
2(b) (page 14) shows another common response, where students created 
the tilted rectangle, and then used the other line segments to create more 
than one prototypically-oriented rectangle. In responses of this type, the 
grading rubric allowed for flexibility as to the number of rectangles cre-
ated. Technically, in Figure 2(b), there are four rectangles (one tilted rect-
angle and three rectangles created by the other line segments). However, 
because the purpose of the item was to explore students’ understanding 
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of the properties of rectangles, specifically as those properties relate to the 
orientation of the rectangle, whether or not students were able to count all 
prototypical rectangles was considered irrelevant to this understanding. 
Therefore, responses of three or four rectangles were considered correct 
in responses similar to Figure 2(b) (next page). Additionally, researchers 
coding the items were instructed to use individual judgment when deter-
mining whether a rectangle was created or not, similar to judgment that 
would be used for coding paper-based drawings. For example, two of the 
line segments in Figure 2(b) do not line up exactly. When line segments are 
not perfectly aligned, or when they overlap, it could be a result of a deficit 
of student understanding about rectangles, or a result of human error in 
using the test-taking interface. Researchers subjectively interpreted this 
and other similar errors when determining whether to code a response as 
a knower.

Figure 2:	 Sample Knower Responses

Figure 2(a):	
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Figure 2(b):	

A response was classified as a misconceiver if at least one prototypical 
rectangle was created but the “tilted” rectangle was not created. Figure 3 
shows three sample responses that were coded as misconceivers. In Figures 
3(a) and (b) (next page), the students created at least one prototypical rect-
angle, and responded that they created the correct number of rectangles. 
However, the students did not create the tilted rectangle, and thus there 
is some evidence that they might be operating under the Shape Properties 
misconception, i.e., that they only recognize rectangles that “look like” the 
prototypical rectangle, and not rectangles with different orientations.5 A 
student response was also coded as a misconceiver if the tilted rectangle 
was created, but the number of rectangles did not include the tilted rect-
angle, thus indicating that the student did not, in fact, think the shape 
created was a rectangle. Figure 3(c) (page 16) shows a sample misconceiver 
response of this type.
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Figure 3:	 Sample Misconceiver Responses

Figure 3(a):	

Figure 3(b):
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Figure 3(c):
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A response was classified as a mistaker if it did not meet the criteria of 
either a knower or a misconceiver. Figure 4 shows a sample response coded 
as a mistaker.

Figure 4:	 Sample Mistaker Response

Two independent researchers coded each response to this item. They 
agreed on the coding of 98.2% of the responses (Cohen’s κ = 0.969). There 
were 15 blank responses that were discarded, since these responses can 
easily be coded as blank by the test delivery system. Thus, there were 969 
responses on which the researchers agreed, and had been double coded 
as knower, misconceiver, or mistaker. Of these responses, 59% were coded 
as knowers, 26% were coded as mistakers, and 15% were coded as miscon-
ceivers. There were 18 responses about which the researchers disagreed.

Developing and Evaluating the Automated Scoring Algorithm

An algorithm was created to automatically predict a code for any 
response to the interactive item. The algorithm used a classic prediction 
approach from artificial intelligence, nearest neighbors. Prediction algo-
rithms generally predict a category for an object based on the character-
istics of that object, and on the characteristics and known categories of a 
separate group of objects. The nearest neighbors algorithm is a memory-
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based prediction algorithm, meaning that it makes a prediction for a 
single object based on the entire database of objects for which it has both 
characteristics and categories. This type of memory-based algorithm is 
traditionally simple to implement and successful at prediction. However, 
these algorithms can also be expensive in time and space, and they act as a 
“black box,” providing no explanation or reasoning behind the predictions 
(Breese, Heckerman, & Kadie, 1998).

The nearest neighbors algorithm has three basic steps. The first step is 
to calculate a distance between each object in the known sample, referred 
to as the training set, and the object for which a category is being predicted, 
referred to as the test object. Typically, there are multiple characteristics 
that describe an object, and an algorithm can consider all or some of these 
characteristics equally, or give more or less weight to certain characteris-
tics, when determining how “far apart” (or similar) two objects are. The 
second step is to find the neighborhood of the test object. The algorithm is 
often referred to as the k-nearest neighbors algorithm because a number is 
chosen for the size of the neighborhood (k). The final step in the algorithm 
is to predict a category for the test object based on the categories of the 
neighborhood.

As an example, consider a system that automatically filters resumes 
based on three keywords: New Media, Internet, and e-Commerce. Resumes 
are to be filtered into two categories: Interview or Reject. A human admin-
istrator first reviews five resumes and decides whether these resumes 
deserve an interview, or should be rejected. The categories of these five 
resumes, as well as the information about whether those resumes con-
tain the keywords, form the training set for the automated algorithm. This 
information is displayed in Table 2 (next page). The algorithm must now 
automatically predict a category for a new resume, Resume6. The algo-
rithm knows the characteristics of this resume- namely, whether or not 
it contains the three keywords. The first step for the algorithm is to find 
the distance between the test object (Resume6) and each object within the 
training set (Resume1-Resume5). For this example, we use a simple dis-
tance function (√(x1–x2)2+(y1–y2)2+(z1–z2)2). The distances are displayed 
in Table 2 (next page). The next step is to determine the neighborhood 
of the test object. In this example, the algorithm will use a value of k=3, 
meaning that the neighborhood will consist of the closest three objects 
from the training set: Resume1, Resume3, and Resume5. The final step is 
to predict a category. Because two of the resumes in the neighborhood have 
the category “Interview,” and only one has the category “Reject,” the algo-
rithm will predict that Resume6 should be classified as “Interview.”
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Table 2:	 Example Nearest-Neighbor Data

Category Contains  
“New Media”?

Contains 
“Internet”?

Contains 
“e-Commerce”?

Distance to 
Test Object

Training
Set

Resume1 Interview 1 1 1 1.00

Resume2 Interview 1 0 1 1.41

Resume3 Interview 1 0 0 1.00

Resume4 Reject 0 0 1 1.73

Resume5 Reject 0 1 0 1.00

Test 
Object Resume6 ??? 1 1 0

For the responses to the interactive item, there were three possible 
categories: knower, misconceiver, or mistaker. Before implementing a pre-
diction algorithm, a set of characteristics defining each response was 
determined. Several combinations of characteristics were considered. One 
simple combination, for example, was the x- and y-coordinate location 
of each line segment. However, in determining whether a response is a 
knower, a misconceiver, or a mistaker, it is not the location of the line seg-
ments that is critical, but rather the relative location of a line segment to 
the other line segments, i.e., does a single segment combine with other 
segments to form a rectangle? Several different methods of representing 
the relative location of segments were explored. The final representation 
implemented used 27 characteristics to describe each response.

The first group of characteristics described whether or not prototypical 
rectangles were formed. Using the labels displayed in Figure 5, this group 
of characteristics described the relative positions of vertical line segments 
d1, d2, d3, and d4, and horizontal line segments d7, d9, and d10 (d5 was not 
included since it could not be used on its own to form a top or bottom 
side of a prototypical rectangle). There are six combinations of vertical line 
segments that can form the left and right side of a prototypical rectangle, 
three combinations of horizontal line segments that can form the top and 
bottom side of a prototypical rectangle, and twelve combinations of ver-
tical and horizontal segments that can meet to form a vertex of a pro-
totypical rectangle. The algorithm generated a value for each of these 21 
combinations, based on whether their distance was within an acceptable 
range of the prototype. For example, in the prototypical rectangle created 
using d1, d2, d9, and d10, the distance between the top and bottom sides 
is 23 pixels. If two of the horizontal segments were within 23±5 pixels of 
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each other, the algorithm would generate a positive value for that combi-
nation. This is how 21 of the 27 characteristics were generated. Because 
the creation of the prototypical rectangle was an integral component of 
the scoring, an additional 22nd weighted characteristic was included based 
on these 21 characteristics.

Figure 5:	 Line Segments in the Interactive Item

Four of the remaining characteristics were calculated similarly to the 
process described above, only they reflected whether other rectangles, 
including the tilted rectangle, were formed. Finally, the numeric response 
describing the number of rectangles entered was also taken into consider-
ation as a weighted characteristic. All of this information was combined 
so that each response was described by a set of 27 characteristics. The dis-
tance between two responses was then defined using a simple distance 
formula of all 27 characteristics (√((x1–x2)2 + (y1–y2)2+(z1–z2)2…)).

As part of the algorithm development process, many different com-
binations of characteristics, and values of error ranges, weightings, and 
distance functions were explored and evaluated. The algorithm chosen and 
described in this paper showed the best performance at prediction; thus, 
the decisions made about which algorithmic features to use were data-
driven. In other words, while each characteristic used by the algorithm is 
reflective of the cognitive framework underlying the item (e.g., does the 
student create a prototypical rectangle), the inclusion or exclusion of cer-
tain characteristics and the weighting or interaction of characteristics was 
determined empirically based on predictive accuracy. Further, the explan-
atory response provided by students was not considered in the automated 
algorithm for two reasons. First, it was not considered to provide evidence 
of misconception as defined by the coding rubric. Second, the purpose 
of the current research is to explore whether an interactive item can be 
automatically scored, and the researchers did not want to confound this 
exploration with automatic assessment of text-based responses. Future 
research could explore the combination of the interactive components 
with the text-based response.
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The algorithm was evaluated for its predicted effectiveness for the 
969 responses about which the two human coders agreed. This was done 
iteratively. First, a single response was removed as the test object, and 
the remaining 968 responses formed the training set. A category was pre-
dicted for the test object, and that predicted category was compared to 
the human-coded category to see whether there was agreement. Then, a 
second response was removed as the test object. This process was repeated 
969 times, so that each of the responses served as the test object and the 
other 968 responses served as the training set. The accuracy across all 969 
trials was averaged to determine the overall accuracy of the algorithm.

The algorithm was also evaluated for its predictions on the 18 responses 
about which the human coders disagreed. A response cannot be included 
in the training set if it does not have a single defined category. Therefore, 
these 18 responses could not be included in the training set. Instead, the 
969 responses about which the human coders agreed were used for the 
training set, and each of the 18 responses was iteratively used as the test 
object.

Results
The algorithm predicted a code for each answer in 0–16 milliseconds. 

When coding with three categories, knower, misconceiver, and mistaker, 
the algorithm correctly predicted the category for 94.6% of all responses 
(Cohen’s κ=0.903). Table 3 shows the accuracy of the algorithm in terms of 
the number of responses in each actual and predicted category, both in raw 
numbers and percentages. The cells along the diagonal, in bold, represent 
correct predictions, and sum to 94.6%.

Table 3:	 Accuracy of the Prediction Algorithm on the 969 Double-Coded 
Responses

Predicted Code

Knower Misconceiver Mistaker

Actual Code

Knower 562 
(58%)

4 
(0.4%)

6 
(0.6%)

Misconceiver 2 
(0.2%)

140 
(14.4%)

6 
(0.6%)

Mistaker 24 
(2.5%)

10 
(1.0%)

215 
(22.2%)
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Instead of coding responses into three categories, it is also possible 
to code into only two categories. One method is to code all responses as 
correct or incorrect, where all mistaker and misconceiver responses are re-
coded as incorrect, and all knower responses are re-coded as correct. This 
type of coding would be useful for a more traditional achievement assess-
ment, rather than a diagnostic measure. When responses were re-coded 
in this way, the algorithm performed slightly better than when predicting 
with three categories, and correctly predicted the category for 96.3% of all 
responses (Cohen’s κ=0.927). A second method is to code all responses as 
misconceiver or non-misconceiver, where all mistaker and knower responses 
are re-coded as non-misconceiver. This type of coding would be useful for an 
assessment that was only returning diagnostic information, and was not 
returning any traditional achievement feedback. When responses were re-
coded in this way, the algorithm correctly predicted the category for 97.7% 
of all responses (Cohen’s κ=0.914).

Prediction Errors
There were errors made when predicting a category for the 969 

responses about which the two human coders agreed. This sub-section 
describes these errors that were made in predicting one of the three cat-
egories (knower, misconceiver, and mistaker), as providing this type of 
diagnostic feedback is the intent of the overall DGA project. While the 
accuracy rate for this prediction was very high, it is important to consider 
the ramifications of the improperly predicted codes. The ultimate goal of 
an automated scoring algorithm is to implement the algorithm in a real-
time classroom testing environment where teachers can be provided with 
instant scores. Therefore, it is important to explore the responses that were 
incorrectly predicted, as these errors could have real-world consequences, 
namely: 1) a student operating under the misconception who is not iden-
tified as such will not receive additional instruction to help overcome 
the misconception; or 2) a student who has a thorough understanding of 
the concept but is incorrectly identified as having the misconception will 
receive superfluous instruction and perhaps miss more advanced instruc-
tion during this time.

Table 4 shows the types of errors made by the algorithm. Thirty-one 
percent of these errors (mistaker predicted as misconceiver and misconceiver 
predicted as mistaker) are considered less significant, because the actual 
and predicted codes both represent an incorrect answer, and because, from 
a diagnostic standpoint, a student would not be classified as a misconceiver 
based on the result of a single item. These types of errors do not incur 
the two real-world consequences defined above. The remaining 70% of the 
errors, however, are significant, as they represent a correct response being 
scored as incorrect, or vice versa.
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Table 4:	 Types of Errors Made by the Prediction Algorithm

Predicted Code

Knower Misconceiver Mistaker

Actual Code

Knower — 4 
(8%)

6 
(12%)

Misconceiver 2 
(4%) — 6 

(12%)

Mistaker 24 
(46%)

10 
(19%) —

There were 24 mistaker responses that were predicted as knower. For 
the majority of these responses (15 responses), the picture created repre-
sented the knowledge of a knower, but the number of rectangles entered 
by the student did not match the picture; Figure 6(a) (next page) is an 
example of this type of response. For these errors, the weighting of the 
relative location of the line segments over-powered the number reported 
by students during prediction, thus resulting in a prediction of knower. 
For four out of the 24 mistaker responses predicted as knower, the answers 
were coded by the researchers as incorrect because one of the rectangles was 
missing a side, as displayed in Figure 6(b) (next page). For these errors, it 
is likely that the relative locations of the line segments were close enough 
to forming rectangles that the algorithm made a knower prediction. The 
remaining five responses of this type were other assorted incorrect 
responses that were predicted to be correct; Figures 6(c) and (d) (page 25) 
are two examples of these responses. For these errors, the relative location 
of the line segments made it appear to the algorithm that prototypical and 
tilted rectangles were being created, although they were, in fact, not.
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Figure 6:	 Sample Mistaker Responses Predicted as Knower

Figure 6(a):

Figure 6(b):
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Figure 6(c):

Figure 6(d):
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There were two misconceiver responses predicted as knower. For both 
of these responses, the picture created represented the knowledge of a 
knower, but the student reported only one rectangle was created; Figure 7 
is an example of one of these responses. In these errors, as in the previous 
case, the weighting of the location of the line segments over-powered the 
number reported by students during prediction.

Figure 7:	 Sample Misconceiver Response Predicted as Knower

The final two categories of errors includes the ten knower responses 
that were predicted to be incorrect (four predicted as misconceiver and six 
predicted as mistaker). For all of these responses, the picture created was 
unique and non-similar to other responses; Figure 8 (next page) is an 
example of one of the responses predicted to be a misconceiver, and Figure 
9 (next page) is an example of one of the responses predicted to be a mis-
taker. It is likely that these unusual responses were not similar to other 
responses in their neighborhood, thus resulting in unreliable and incor-
rect predictions. Automating accurate predictions of unusual objects is a 
common challenge in prediction systems.
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Figure 8:	 Sample Knower Response Predicted as Misconceiver

Figure 9:	 Sample Knower Response Predicted as Mistaker



Automated Scoring of an Interactive Geometry Item� Masters

28

J·T·L·A

Size of the Training Set
It might seem inevitable to obtain high predictive accuracy with 

upwards of 1,000 responses on which to base a prediction. Therefore, the 
accuracy of the algorithm was tested using a smaller set of responses for 
prediction. To begin, a random sample of 50 responses was removed from 
the training set, leaving 918 responses. Then, a predicted code was made 
for each of the 969 responses, based only on the codes for this reduced set 
of 918 responses. Because the removal of the 50 responses was random, 
it was repeated for 1,000 trials, and the average accuracy was calculated 
based on all trials. The average accuracy was 94.5%. Next, 100 responses 
were removed from the training set, leaving 868 coded responses on which 
to base predictions. A code was then predicted for each of the 969 responses 
based on this reduced training set, and this trial was repeated 1,000 times. 
This process was repeated until there were only 18 responses remaining in 
the training set. Figure 10 shows the average accuracy rates for each trial. 
The accuracy remained above 90% with as few as 118 cases on which to 
base predictions, after which the accuracy decreased.

Figure 10:	 Average Accuracy based on Varying Number of Cases
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Human-Coding Disagreements
For 17 of the 18 responses about which there was human disagree-

ment, the category predicted by the algorithm agreed with one of the 
two human coders (94.4%). Two of the 18 responses were blank, but 
were incorrectly coded by one human coder as mistaker. For one of the 18 
responses, displayed in Figure 11, one researcher coded the response as a 
knower, allowing for the incomplete rectangle to satisfy the requirement 
of a prototypical rectangle, and the other researcher coded the response as 
a mistaker, judging that the rectangle was not complete enough to satisfy 
the requirement. This was a subjective decision. The algorithm predicted 
that this response was a mistaker.

Figure 11:	 Response for which Human Coders Disagreed based on Subjective 
Interpretation

For the remaining 15 responses, upon review of the human scoring, 
the disagreements were attributed to human error in interpreting the 
rubric, and using a strict interpretation of the coding rubric, one of the two 
human codes was assigned to each response as a consensus code. When 
comparing the predicted code to this newly assigned consensus code, the 
algorithm showed 53% agreement; there were seven responses where the 
predicted code did not match the consensus code. Two of these responses 
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were misconceiver responses that the algorithm predicted as mistaker (an 
“insignificant” error as described earlier). For the remaining five responses, 
a sample of which is displayed in Figure 12, the consensus code was either 
a misconceiver or a mistaker, and the predicted code was knower. For these 
responses, similar to one type of error described earlier, the location of the 
line segments did, in fact, represent a knower response, but the number of 
reported rectangles did not. For these errors, the weighting of the relative 
location of the line segments over-powered the number reported by stu-
dents in the prediction process.

Figure 12:	 Sample Response for which Human Consensus Code Disagreed with 
Predicted Code
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Discussion
Formative assessment is a critical component of classroom practice. 

For assessment results to truly inform instruction, they must provide 
timely feedback to teachers. While traditional multiple-choice assessments 
can provide instant results, they are of limited depth. Open-response 
items provide richer information, but instant scoring is often untenable. 
Research efforts have explored effective methods of automatically scoring 
open-response items, both in essay scoring and in mathematics.

The research presented here expands this base of research into the 
area of geometry in the middle grades. Responses to an interactive item 
designed to assess misconceptions related to Shape Properties were hand-
coded. An algorithm was developed to automatically predict a code for the 
student responses. The algorithm based predictions on the relative loca-
tions of the line segments within the item. The algorithm showed high 
accuracy when compared to human coding. This accuracy was high when 
coding responses both dichotomously and diagnostically. Ultimately, the 
goal of creating an automated coding system would be to allow interac-
tive items to be included in a larger diagnostic assessment that returned 
instant feedback to teachers. This research provides initial evidence that 
this is possible.

There were errors in prediction. Seventy-percent of the errors were 
considered “significant,” i.e., an incorrect answer was predicted as correct, 
or vice versa. However, upon closer inspection, for some errors, specifi-
cally those displayed in Figures 6(a) and (b) (page 24), it is possible that 
the algorithm’s prediction would be closer to a teacher’s scoring. Because 
the coding rubric used by the human coders was designed for research 
purposes, and would be used independently by two separate coders, it 
strictly defined knower responses as those where the number of rectan-
gles created matched the number reported (excluding the one leniency 
described earlier). However, a classroom teacher might take more leeway 
in the grading of these types of responses than did the researchers and, in 
fact, code them as correct, as was predicted by the algorithm. Additionally, 
while researchers were allowed to use subjective judgment when segments 
did not line up perfectly, they should not have accepted rectangles that 
were completely missing a side. Similar to the last type of error, however, 
these types of responses might be more loosely interpreted by a classroom 
teacher as correct. Thus, in a classroom setting, some of the errors that are 
considered significant might be more closely aligned to a teacher’s inter-
pretation than to the researchers’ coding, and thus the errors might have 
less impact than originally assumed. It should be noted that these are the 
researchers’ conjectures about the practical significance of some of the 
predictive errors, and are not based on classroom evaluations.
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Finally, there is evidence that in future trials of automatic scoring algo-
rithms, a smaller training set can be used while still maintaining predictive 
accuracy. While it is premature to set a specific acceptable cut point in pre-
dictive accuracy, this research provides evidence that the algorithm had an 
accuracy rate of greater than 90% with a greatly reduced number of cases on 
which to base predictions. Therefore, future trials exploring the automatic 
coding of similar interactive items could be based on a smaller collected 
sample of responses. This finding is encouraging given the efforts required 
to recruit teachers to participate in exploratory research. Further, if this 
item were to be implemented in a classroom setting, a limited number of 
cases in the training set could be provided along with the testing system 
while still maintaining high predictive accuracy.

There are two main contributions of this research. First, it serves as 
initial evidence that traditional algorithms from artificial intelligence 
can be used to accurately and automatically code student responses, both 
dichotomously and diagnostically, to an interactive geometry item for the 
middle grades. This finding opens up great potential for the development 
of future interactive items that can offer K–12 mathematics teachers the 
opportunity to gain deeper insight into their students’ thinking and be 
automatically scored to provide teachers with instant feedback on student 
understanding. The majority of research in automated scoring has focused 
on essay scoring. Research exploring the automatic scoring of mathe-
matics items has focused on rational expressions and graphs, typically at 
the undergraduate or graduate level. This research expands that base into 
the area of geometry in the middle grades. Teachers of K–12 mathematics 
have often been constrained to traditional multiple choice items if they 
want an assessment that can be instantly scored. This research is a first 
step towards leveraging existing scoring technology for the mathematics 
domain in the middle grades.

Second, this research provides evidence that innovative and interactive 
item types may not necessarily need to be hand-scored. While this paper 
focused on a single item, future research will be aimed at developing a class 
of similar items, all of which could be scored with the same underlying 
algorithm. For example, a set of items could ask students to build paral-
lelograms, rectangles, and squares, and provide line segments which could 
create both prototypical and non-prototypical shapes. The same automatic 
scoring algorithm could be applied to all of these items; item developers 
would only have to specify the defining characteristics of correct and mis-
conception responses. Other item sets might explore different types of 
interactivity, but utilize the same underlying algorithm described here. By 
providing evidence that innovative and interactive items can be automati-
cally scored, this research supports the idea these types of items should be 
developed and researched.
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There are two main limitations of this work. First, it is based on a single 
item, rather than a class of items. However, this work was intended as a 
proof-of-concept. Future work will involve developing additional interac-
tive items and exploring the accuracy of the algorithm on those items. 
Second, although the accuracy was very high, there remained a group of 
responses that were incorrectly scored, some with significant errors. While 
no algorithm will have perfect accuracy, just as two human coders would 
not have perfect agreement, predictive errors should not be discounted. 
One way to combat this reality is to develop a measure of confidence to 
accompany predicted scores. In this way, the algorithm could flag a group 
of responses about which it was less certain about its accuracy. It might 
base this certainty on the distance of the test object to its nearest neighbor, 
for example, or on a separate set of characteristics altogether. The group of 
flagged responses, which would contain both responses that could be accu-
rately scored and responses that could not, would be removed for hand-
coding by the classroom teacher. Future work will focus on exploring such 
a confidence rating.
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Endnotes
1. 	 Due to a technical error in the administration of the teacher survey, ethnicity 

information was not collected about participating teachers.

2. 	 Regions defined by the United States census: http://www.census.gov/geo/www/
us_regdiv.pdf.

3. 	 Locales defined by the National Center for Education Statistics Common Core of 
Data: http://nces.ed.gov/ccd/.

4. 	 The explanatory section of the item was included for the original purpose of item 
administration (using student responses to develop closed-response options), and 
was not considered relevant to classifying an individual response as a knower.

5. 	 As stated earlier, a student would never be classified as a misconceiver based on his 
or her response to a single item.
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