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Abstract:

The automated assembly of alternate test forms for online delivery provides an alterna-
tive to computer-administered, fixed test forms, or computerized-adaptive tests when 
a testing program migrates from paper/pencil testing to computer-based testing. The 
weighted deviations model (WDM) heuristic is particularly promising for automated test 
assembly (ATA) because it is computationally straightforward and produces tests with 
desired properties under realistic testing conditions. Unfortunately, research into the 
WDM heuristic has focused exclusively on the Item Response Theory (IRT) methods even 
though there are situations under which Classical Test Theory (CTT) item statistics are 
the only data available to test developers. 

The purpose of this study was to investigate the degree of parallelism of test forms  
assembled with the WDM heuristic using both CTT and IRT methods. Alternate forms  
of a 60-item test were assembled from a pool of 600 items. One CTT and two IRT  
approaches were used to generate content and psychometric constraints. The three  
methods were compared in terms of conformity to the test-assembly constraints, average  
test overlap rate, content parallelism, and statistical parallelism. The results led to a primary  
conclusion that the CTT approach performed at least as well as the IRT approaches. The  
possible reasons for the results of the comparability of the three test-assembly approaches 
were discussed and the suggestions for the future ATA applications were provided in this 
paper.
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Introduction
Assembling equivalent test forms with minimal test overlap across 

forms is important in ensuring test security. An ideal goal in alternate 
test form assembly is to construct test forms that are equivalent in  
psychometric characteristics, as well as in non-psychometric properties. 
In practice, however, it may be impossible to achieve such a goal according 
to the Classical Test Theory (CTT)-based definition of parallel tests, in 
which true scores and variances of observed test scores across forms must 
be identical for any possible subpopulation of examinees (Lord & Novick, 
1968; Lord, 1980). When CTT conditions for parallelism are not strictly 
met, post-administration equating and passing score determination are 
adapted to adjust for differences among test forms so that it makes no  
difference which form an examinee takes.

The goal of pre-equating is to derive equating transformations before 
a test is administered intact. Automated assembly of multiple forms can 
result in pre-equated forms if conditions for parallelism are met. That 
is, if the definition of test parallelism holds for the constructed forms, 
test forms are indistinguishable to the examinee and test scores of dif-
ferent test forms are comparable to each other. Therefore, the goal of pre-
equating is considered to be achieved. Assembling multiple test forms 
prior to administration is an appealing idea because, theoretically, if pre-
equated test forms are truly parallel and maintain minimal item overlap 
or duplication, post-administration corrections will not be required. This 
result holds because the differences in an examinee’s scores on alternate 
test forms should occur from random fluctuation rather than systematic 
differences in the test forms. When designed properly, pre-equated (par-
allel) test forms could be administered to candidates in high-stakes testing 
situations with a nominal amount of post-testing delay in reporting scores. 
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The forms would be equitable in terms of fairness to candidates, and test 
security problems would be manageable. As computer technology becomes 
more prevalent, pre-equated parallel test forms can be obtained efficiently 
via automated test assembly or ATA procedures.

Swanson and Stocking (1993) first proposed the use of the WDM 
heuristic for automated test assembly. Stocking, Swanson, and Pearlman 
(1993) subsequently applied the WDM heuristic to the automated assembly 
of fixed forms using real item pools and showed that it produced the best 
possible tests given the nature of the item pools and constraints imposed. 
In these previous studies, IRT methods were used exclusively to calibrate 
item response data and generate psychometric constraints. However, 
there may be situations under which classical item statistics are the only 
data available. Not all testing programs can use IRT methods to calibrate 
item response data because 0/1 item response data may be unavailable, 
and the test assembler may have to rely on classical item statistics alone 
in creating parallel forms. For example, a testing company may be hired to 
create parallel forms from an existing pool for which only p-values and rpbis 
values are available. Under these conditions, test assembly methods using  
classical item statistics would provide a possible solution to the test 
assembly problem. Accordingly, it was important to investigate how a 
Classical Test Theory (CTT) approach might affect the automated assembly 
of alternate test forms. 

Research Question
The primary question addressed in this study was, “Do test assembly 

methods using classical item statistics yield test forms that are as parallel 
as those constructed using IRT methods?” Such comparisons can be made 
by contrasting the classical item-statistics approach with conditional IRT 
approaches in producing alternate test forms using the degree of congru-
ence among the distributions of item response functions of alternate test 
forms as an index of parallelism, which is described in detail in later sec-
tions. 

Although the construction of alternate test forms with classical statis-
tics and IRT-based functions is not based on this strict definition of paral-
lelism, it seems reasonable to presume that the approaches based on IRT 
would yield test forms of higher degrees of parallelism. This might occur 
because, by definition, an item characteristic function is a regression func-
tion on the examinees’ unidimensional latent trait, θ. In other words, by 
nature, IRT models deal with item difficulty and variability issues condi-
tionally and thereby are more sensitive to individual item characteristics 
than the classical approach is. However, it may be the case that IRT-based 
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methods do not produce better parallelism due to factors related to the algo-
rithm used for automated test assembly. For example, when the number 
of the IRT-based constraints (e.g., 33 constraints, or TTIF at 33 θ values) 
is much greater than that of the CTT-based constraints (i.e., 2 constraints, 
or expected observed-score mean and standard deviation) for automated 
test assembly, the IRT-based methods may produce less optimal tests, and 
thereby less parallel ones.

Purpose of Study
The purpose of this study was to investigate the degree of parallelism 

of test forms constructed with the WDM heuristic (Swanson & Stocking, 
1993) using both classical and IRT approaches. The criteria used to eval-
uate test parallelism derived from these ATA approaches were conformity 
to the ATA constraints, test overlap rate, content parallelism, and statis-
tical parallelism. More specifically, the study focused on how these test 
properties were affected by the ATA approach used (CTT vs. IRT) and its 
statistical constraints.

The major index of statistical parallelism used in this study was based 
on the parallelism definition developed by van der Linden and Luecht 
(1998), which is that for two tests to be exactly parallel, they must have 
identical moments of P(θ) for all values of θ, and thus they have identical 
distributions of P(θ) for all values of θ. This index was adapted to evaluate 
test parallelism resulting from each ATA approach because it could provide 
a more strict standard to evaluate which method (either classical-related  
or IRT-related) generates multiple test forms with the highest degree of 
parallelism. However, the strongly parallel index may be an overly strict 
criterion for statistical parallelism, and thereby an alternative index, 
Smirnov statistic T (van der Linden & Luecht, 1998; Conover, 1980), based 
on a less stringent criterion also was examined.

Even though the definition of parallelism involves all m moments, in 
a practical sense, the important moments to examine between the refer-
ence test and the constructed tests are the first moment and the second 
central moment. The first moment is critical in assessing the form diffi-
culty or conditional difficulty of the constructed tests at certain values of 
θ, and the second central moment is important in the evaluation of the 
form variability or variability of P(θ) at certain values of θ. Accordingly, 
observed test mean and standard deviation, the first moment and stan-
dard deviation of P(θ), and the conditional error variance of observed test 
score X (CEV of X) also were examined in this study to evaluate the degree 
of statistical parallelism.
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Literature Review

Automated Test Assembly
Automated test assembly has gained much attention in the measure-

ment community in recent years due to faster computer processing and 
larger item pools for assembling tests (e.g., Ackerman, 1989; Boekkooi-
Timminga, 1990; Swanson & Stocking, 1993; van der Linden, 1987, 1998a, 
1998b). The methods of automated test assembly provide efficient test 
construction and may ensure conformity to specified criteria or targets in 
test construction such as the equivalence of test forms based on a certain 
test blueprint. An item pool stored on a computer may contain hundreds 
or even thousands of items that have various psychometric (e.g., conven-
tional item p-values, point-biserial correlation coefficients, and IRT-based 
a-, b-, and c-parameter estimates) and non-psychometric (e.g., content cat-
egories) attributes. These attributes can be used to automatically assemble 
test forms by modeling desired test specifications using specially designed 
computer software. 

Test forms should be assembled to meet specifications for both psy-
chometric and non-psychometric properties of the tests. Psychometric 
attributes of items may refer to classical item statistics, IRT-based item 
parameter estimates (i.e., a-, b-, and c- parameter estimates), item-response 
functions, or item information functions. The test-level psychometric 
properties are often functions of the item attributes (Luecht, 1998). For 
example, the test information function equals the sum of the item infor-
mation functions, and the test mean equals the sum of the item difficulties 
(i.e., p-values). Non-psychometric specifications for test assembly refer to 
attributes that are not related to statistical characteristics of tests and 
include factors such as test length, test content, number of test forms to 
be constructed, item format, item sets, item enemies (or item exclusion), 
and item-exposure rate (or item usage frequency).

The basic elements required in implementing automated methods for 
assembling parallel tests are usually (a) the test length, (b) content con-
straints (c) desired psychometric properties, and (d) number of test forms 
to be assembled. Weights for each of these test specifications or constraints 
are sometimes required. The weights allow for some constraints to be 
emphasized over others in most of the automated test assembly methods. 
In the Weighted Deviations Model approach (Swanson & Stocking, 1993), 
the weights also serve the purpose of placing all constraints that are evalu-
ated on different metrics on equal footing.

Due to recent advances in ATA procedures and faster computer pro-
cessing, the automated assembly of alternate test forms for online delivery 
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provides an alternative to computerized adaptive testing (CAT) when a 
testing program migrates from traditional paper/pencil (p/p) testing to 
computer based testing (CBT). The automated assembly of alternate test 
forms for online delivery may be less problematic in comparability than 
CATs because the former testing format (e.g., fixed forms – same test length 
and set of items) may be more similar to the p/p format. Additionally, 
scoring for ATA procedures can remain on a percent-correct scale across 
all multiple forms – a score scale that is understood by most examinees 
(or candidates) and program directors. Furthermore, different test-taking 
behaviors or strategies are not required of candidates so that lengthy 
explanations or tutorials of test-taking procedures may not be needed for 
ATA procedures, even when the tests are computer based. Finally, item 
development need not be sensitive or responsive to particular levels of 
candidate proficiency because items are not tailored specifically to each 
examinee’s skill level. In most CAT environments, for example, item pools 
must either be rich in items that measure well across all proficiency levels, 
or near the passing score. Although the latter would also be the goal of a 
good fixed-length test, a lack of good items at particular levels of profi-
ciency would not preclude the test developer from constructing multiple 
test forms using ATA methods.

Automated Assembly of Alternate Test Forms Based  
on CTT

Automatically assembled and pre-equated parallel test forms can be 
developed either within the framework of CTT or item response theory (i.e., 
IRT). Automated assembly of alternate test forms based on the CTT defini-
tion of strictly parallel forms is unrealistic because it is difficult to develop 
software consistent with this definition (i.e., first- and second- order equi-
ties across forms hold for all possible subpopulations). Consequently, in 
many studies of automatically constructing parallel forms with classical 
item statistics, identical overall observed-score means and variances for all 
examinees are commonly defined goals (e.g., Armstrong, Jones, & Wang, 
1994; Gibson & Weiner, 1998). The CTT-based statistical indices are easy 
to compute, manipulate, and understand by lay persons, but they will vary 
from sample to sample without extensive pre-testing. 

Automated Assembly of Alternate Test Forms Based  
on IRT

Alternatively, within the framework of IRT and automated test con-
struction, equivalent test forms are typically produced based on Samejima’s 
definition of weakly parallel forms in which the forms are matched to a 
target test information function (TTIF) (e.g., Luecht, 1998; van der Linden 
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& Adema, 1997). This is a method reasonably simple to implement because 
item information functions are additive and easy to manipulate (van der 
Linden, personal communication). However, Samejima’s definition of par-
allelism does not necessarily yield identical observed-score distributions 
because test information functions are only related to the asymptotic 
error variance of proficiency estimates on the θ-scale rather than the true-
score distribution.

van der Linden and Luecht (1998) proposed an IRT-based method for 
constructing strongly parallel tests by matching items on item response 
functions. They noted that “Test forms with pairwise identical response 
functions have equal true scores and observed-score variances for each 
examinee in the population for which the IRT model holds and are therefore 
parallel” (van der Linden & Luecht, 1998, p. 402). Thus, the IRT definition 
of strongly parallel forms will guarantee the equivalence of the observed-
score distributions within the CTT strict definition of parallelism because 
item response functions, test characteristic functions (i.e., true scores), 
and test information functions (i.e., error variances) are all identical across 
forms. Since the IRT definition of strongly parallel forms refers to equiva-
lence in item response functions across forms, the criterion that parallel 
test forms have identical distributions of item response functions condi-
tional on θ is an appropriate standard to evaluate the degree of parallelism 
of alternate test forms (van der Linden & Luecht, 1998). 

With the IRT definition of strong parallelism, if the item response 
function, Pi (θ), represents the conditional difficulty of the ith item for a 
person with latent trait (θ), then parallel test forms would refer to test 
forms that satisfy the requirement that the distribution of Pi (θ) is the 
same for each θ value across test forms, and thus the degree of congru-
ence in the distributions of Pi (θ) across forms can be used to indicate the 
degree of test parallelism. This definition of strongly parallel test forms 
is in line with one proposed by McDonald (1999). McDonald defined two 
test forms as item-parallel if they consist of paired items with identical 
item parameters. 

Nevertheless, this requirement may be too stringent for automated 
test assembly. McDonald (1999) proposed definitions for other degrees 
of test parallelism between test forms, one of which is that test forms are 
regarded as TCC-parallel if they have identical test characteristic curves 
or functions. Assembling alternate test forms by matching a target test 
characteristic curve is of practical value when equivalence of test difficulty, 
true score, or passing score for alternate test forms is the major concern 
for testing programs. Accordingly, a much more relaxed requirement in 
which the first moment of conditional difficulty (the test characteristic 
function or TCF) is identical across test forms can be considered and used 
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as a statistical constraint for automated assembly of parallel test forms. 
The test characteristic curve may be anchored by fixing two points on the 
curve if the points are chosen from the area surrounding the inflection 
point of the test characteristic curve. If these two corresponding values of 
θ mark critical points on the latent trait metric, a requirement of identical 
first moment of conditional difficulty at these two points across test forms 
might be sufficient to assemble test forms with equivalent test character-
istic curves.

Strict Standard of Evaluating Statistical Parallelism
Not all of the methods for assembling parallel tests discussed here are 

guaranteed to produce truly parallel test forms. Even though multiple test 
forms have identical classical statistical properties (e.g., means or stan-
dard deviations of observed scale distributions), identical test informa-
tion functions (TIFs), or identical test characteristic functions (TCFs), 
they may not match the criteria described in the stringent or strong defi-
nitions of parallel test forms based on CTT and IRT. The definition of item 
parallelism proposed by van der Linden and Luecht (1998) and McDonald 
(1999) is a more stringent constraint for construction of equivalent test 
forms than are those of classical-related parallelism (e.g., equivalent means 
and standard deviations of observed scale distributions), TCF parallelism or 
TIF parallelism. Accordingly, the degree of the congruence in the distribu-
tions of item response functions conditional on θ (i.e., Pi (θ)) across forms 
provides a more strict standard to evaluate which method (either classical-
related or IRT-related) yields alternate test forms with the highest degree 
of parallelism. 

Methods
The test-assembly methods compared in this study are introduced in 

the following section. Afterwards, the characteristics of the item pool, the 
properties of the reference form on which to base the test-assembly con-
straints, and the criteria used to evaluate test parallelism are presented. 

Test-assembly approach
The primary independent variable in the study was test-assembly 

approach. Three approaches were compared: Classical Test Theory (CTT) 
with a target test mean and a target test standard deviation, Item Response 
Theory (IRT) with a target test information function (IRT-TTIF), and Item 
Response Theory with a target test characteristic function at two values 
of θ (IRT-TTCF2P). All three approaches were implemented using the 
weighted deviations model (WDM) heuristic.
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WDM Heuristic

The algorithm used for automated test construction for this study was 
the weighted deviations model (WDM) heuristic described by Swanson and 
Stocking (1993). The WDM heuristic procedure designed for automated 
test assembly can be categorized as a greedy heuristic algorithm. The goal 
of a greedy algorithm is to maximize a set function by choosing succes-
sively the next element that yields the greatest improvement in some cri-
terion value if that element exists. That is, the goal of the greedy heuristic 
is the pursuit of the maximum improvement at each iteration of some 
procedure to achieve monotonically better progress in approaching the 
optimal solution. Within the context of test assembly, a greedy heuristic 
refers to the rule of item selection by which items are selected sequentially 
so that those chosen first provide the best improvement when conforming 
to all the constraints simultaneously. Heuristic algorithms are designed 
to quickly find the best possible solution to the item selection problem 
rather than to seek an optimal solution in the sense of exactly meeting all 
constraints simultaneously. The heuristics may yield appropriate solutions 
in the sense that the item pool cannot fulfill the target-test constraints 
perfectly or provide ideal tests.

The WDM heuristic was selected as the automated test assembly 
method primarily because of its computational simplicity and its flex-
ibility in handling both IRT and CTT item statistics. The method does 
not require a sophisticated mathematical background to understand or to 
implement. Additionally, the method always produces the best possible 
test given the nature of the item pools and constraints imposed rather 
than seeking an optimal test in the sense of exactly meeting all constraints 
simultaneously. This is an advantage over many 0–1 linear programming 
(LP) models when the item pool cannot fulfill the target-test constraints 
perfectly because the 0–1 linear programming approach still seeks an 
optimal test and often results in the problem of infeasibility. That is, when 
the number of constraints (or test specifications) is very large and the item 
pool cannot supply the required number of qualified items, the test cannot 
be constructed with the 0–1 linear programming approach.

Implementation of the WDM method typically requires the test con-
structor to specify: (a) a set of content constraints (i.e., the test-content 
blueprint or outline), (b) the test length, (c) the statistical properties of 
the tests to be constructed (i.e., the target or reference-form require-
ments), and (d) the number of test forms to be drawn. In addition, the 
test constructor must provide weights for each of the constraints. The 
weights serve a dual purpose. First, they allow for some of the constraints 
to be emphasized over others. Second, constraints that are naturally eval-
uated on different metrics can be placed on equal footing with all other 
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constraints. This redistribution of the importance of constraint factors is 
necessary because the WDM approach is based on the evaluation of each 
item relative to the distance of the (positive) deviations of its content and 
statistical properties from those required on the target or reference form.

Characteristics of the Item Pool

The Known or True Item Pool

The item pool used in this study was derived from ten forms of a 
particular Mathematics Usage Test, and covered four content areas: 152 
content-A items, 127 content-B items, 147 content-C items, and 174 con-
tent-D items. This mathematics test is a 60-item exam that measures math-
ematics achievement in college-bound high school students. The ten forms 
of the Mathematics Test were calibrated separately using the 3-parameter 
logistic model (3-PLM) in the computer program, Bilog-MG (Zimowski, 
Muraki, Mislevy & Bock, 2003). The calibrations were not scaled or linked 
to a common metric because the data for the ten forms were collected from 
ten randomly equivalent groups with 2000 examinees for each group, and 
the purpose of obtaining the item-parameter estimates was simply to have 
a pool of item parameters on which to base the study. Each calibration was 
performed using the same prior latent trait density, and the default prior 
in the Bilog-MG program is θ ~ N(0,1). The average item parameters, 

	 a, b and c, 

in the pool were 0.991, 0.112, and 0.171, respectively. Additionally, the 
average item p-values and point-biserial correlations in the pool were 0.6 
and 0.41, respectively.

Because item pools in practice were based on estimates of item charac-
teristics rather than known characteristics, additional steps were under-
taken to create the most realistic and appropriate item and test indices for 
the three test assembly approaches used in this study (CTT, IRT-TTIF, and 
IRT-TTCF2P). These steps are described below.

CTT Data

The 600 items from the item pool with known item parameters were 
used to generate 20000 simulees with dichotomously-scored (i.e. 0/1) data 
through a simulation by assuming that the proficiency levels θs of exam-
inees are normally distributed with mean of 0 and standard deviation of 
1 (i.e., N(0,1)) and that the probability of a correct response to any item, 
P(θ), fits the 3-PLM. The generated 0/1 responses were then used to cal-
culate the conventional item difficulty (p-value) and item discrimination 
(point-biserial correlation coefficient or rpbis) for each item in the pool. The 
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resultant average item p-values and rpbis indices in the pool were 0.559, 
and 0.395, respectively. 

IRT Data

The same 0/1 responses derived from the simulation above were then 
calibrated using the computer program, Bilog-MG, in a single computer 
run. This run produced item parameter estimates for the 600-item pool

	 (âi, bi, ci, i=1, …, 600) 

that were used in implementing the two IRT-based automated test 
assembly methods examined in this study (IRT-TTIF and IRT-TTCF2P). 
The average item parameter estimates in the pool were 0.965, 0.127, and 
0.178, respectively.

Test-Content Outline
The original content areas from the Mathematics Usage Test were not 

used in this study to eliminate the likely confounded relationship between 
test content area and item difficulty. Content area and item difficulty con-
founding was reduced to provide fairer comparisons among test assembly 
approaches. To eliminate this possible source of confounding, one of four 
possible content classifications (A, B, C, or D), assigned to an arbitrary 
distribution, was randomly selected and assigned to each item in the pool. 
From this process, the item pool of 600 items resulted in 152 content-
A items, 127 content-B items, 147 content-C items, and 174 content-D 
items (Table 1, next page). 

In real testing situations, content outlines need not be the same as the 
content distributions of the item pool. For many professional certification 
or licensure programs, item pools frequently have content distributions 
that differ from the test content outline. For example, there may be fewer 
items in one content area than another because those items are more diffi-
cult to create. And thereby we specified, in this study, a hypothetical refer-
ence content outline to represent a content framework that did not mirror 
the content distribution of the item pool. The test-content outline is pre-
sented in Table 1. 

ˆ ˆ
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Table 1:	 Content Distribution of the Item Pool and Test-content Outline

Content Area Item Pool Test

A 152 (25%) 9 (15%)

B 127 (21%) 3 (5%)

C 147 (25%) 18 (30%)

D 174 (29%) 30 (50%)

Reference Test Distribution
The reference test distribution was created from items in the pool. To 

ensure sufficient items for test assembly, the reference distribution was 
chosen to mirror the item pool in terms of the test information function 
(i.e., TIF) and its TIF was peaked over the middle part of the proficiency 
range (i.e., where the TIF for the item pool was peaked). The psychometric 
properties from the reference distribution were used as statistical con-
straints for automated test assembly. The psychometric attributes in a 
reference distribution were expected to affect the comparability between 
the CTT and the IRT approaches. If the psychometric attributes in a ref-
erence distribution are very different from those in the pool, there may 
be insufficient items to match the specified constraints for test construc-
tion no matter what method is used. The goal of this study is to identify 
the variables other than pool characteristics (e.g., sufficient items or not) 
that affect the comparability between the CTT and IRT approaches, and 
thereby the reference distribution mirroring the item pool was specified 
for this study to ensure sufficient items for test assembly.  

The combination of content outline and reference test distribution 
specified previously yielded a reference test. In this study, the length of 
the reference test was 60 items. The psychometric properties were speci-
fied under each test-assembly approach. Three approaches to establishing 
the statistical constraints were examined here. Under the classical test 
theory (CTT) approach, the expected observed test score or form diffi-
culty and expected standard deviation of observed test scores were used 
as the statistical constraints. Under the IRT-TTIF approach, a target test 
information function was specified. Under the IRT-TTCF2P approach, the 
target test characteristic function at two values of θ, or target conditional 
test difficulty at two values of θ was specified. None of these constraint 
sets is guaranteed to produce truly parallel test forms, as will be revealed 
later. The psychometric properties from the reference distribution were 
described in detail in the section to follow.
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Reference Form Difficulty

The difficulty of the reference test was computed from the 60 item 
parameters of a reference test by assuming that the latent trait distribu-
tion, g(θ), was N(0,1). The difficulty of a given item (i.e., p-value or pi ) on 
the reference test equaled

where Pi (θ) is the item response function for a given item i based on the 
usual 3-PLM mentioned previously. The difficulty of the reference form 
equaled  

where the sum is over the 60 items on the reference form, and this value 
was 33.077. 

Expected Observed Score Distribution

The expected observed-score distribution was obtained from the 60 
item parameters of a reference test by assuming that θ ~ N(0,1) and using 
the recursive procedure described by Lord and Wingersky (1984). This 
computation was used to obtain the expected observed-score variance, 
VAR(X), on the reference form, and ultimately, the observed-score stan-
dard deviation, {VAR(X)}1/2 or SDX = 11.541.

Target Test Information Function

The 60 item parameters from a reference form were used to calculate 
a target test information function, or Σ[Ii(θ)], where the sum was across 
items. The target test information function was calculated from the refer-
ence form at 33 values of θ, ranging from –4.00 to +4.00 in increments of 
0.25.

Target Conditional Test Characteristic Function on Two Discrete Points

The 60 item parameters from a reference form also were used to cal-
culate a target test characteristic function, or Σ[P(θ)], where the sum was 
across items. The target test characteristic function was calculated from 
a reference form for two values of θ, –1.5 and 1.5. These two values of θ 
were chosen so that the target test characteristic curve could be anchored 
by fixing two points on the curve. Two critical values on the θ scale were 
expected to be sufficient to anchor or define the test characteristic curve. 

∑ pi 
i=1 

60

∫ Pi (θ)g(θ)d(θ),
–∞

+∞

pi  =  
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Only two values of θ were taken because there is a fairly well-known phe-
nomenon that occurs when the test characteristic function, Σ[P(θ)], is 
used as a statistical constraint in ATA problems. Because individual item 
characteristic functions (ICCs) are not additive, their sum is not logistic. 
Hence, there is a built-in bias in the use of Σ[P(θ)] as a constraint and the 
constructed tests do not meet specifications.

ATA Constraints
The ATA problem was to assemble six tests with each of the CCT, IRT-

TTIF, and IRT-TTCF2P approaches that followed the content and psy-
chometric constraints specified from the reference form. Accordingly, all 
assembled test forms needed to be 60 items in length, and follow the con-
tent distribution or outline given in Table 1 (page 14). In terms of psycho-
metric properties, each of the six tests assembled with the CTT method 
needed to have a difficulty of 33.077, and an observed-score standard 
deviation of 11.541, each of those assembled with the IRT-TTIF method 
was constrained to have the test information function matching the target 
function from the reference form, and each of those assembled with the 
IRT-TTCF2P approach was required to have the test characteristic func-
tion matching the target function from the reference form at two values 
of θ.

In practice, the constraints may consist of upper and lower bound-
aries around the target values, so that there is some degree of flexibility 
in meeting each constraint. For this study, the actual psychometric and 
content constraints were arbitrarily defined in Table 2 through Table 4, 
and all constraints were weighted equally.

Table 2:	 CTT Constraints

1 Test Difficulty:	 32.577 ≤ Σ(p-values) ≤ 33.577

2 Observed-score variability:	 11.041 ≤ SDX = Σ{p(1–p)}1/2r ≤ 12.041

3 Content area A:	 9 items

4 Content area B:	 3 items

5 Content area C:	 18 items

6 Content area D:	 30 items
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Table 3:	 IRT-TTIF Constraints

# of  
Constraint Lower Bound TIF (θ) Upper Bound TTIF from Reference

1 0.049 	 ≤	 TIF(θ	 =	 –4.00)	 ≤ 0.133 0.091

2 0.117 	 ≤	 TIF(θ	 =	 –3.75)	 ≤ 0.197 0.157

3 0.227 	 ≤	 TIF(θ	 =	 –3.50)	 ≤ 0.303 0.265

4 0.402 	 ≤	 TIF(θ	 =	 –3.25)	 ≤ 0.474 0.438

5 0.669 	 ≤	 TIF(θ	 =	 –3.00)	 ≤ 0.737 0.703

6 1.057 	 ≤	 TIF(θ	 =	 –2.75)	 ≤ 1.121 1.089

7 1.596 	 ≤	 TIF(θ	 =	 –2.50)	 ≤ 1.656 1.626

8 2.311 	 ≤	 TIF(θ	 =	 –2.25)	 ≤ 2.367 2.339

9 3.211 	 ≤	 TIF(θ	 =	 –2.00)	 ≤ 3.273 3.242

10 4.338 	 ≤	 TIF(θ	 =	 –1.75)	 ≤ 4.386 4.362

11 5.672 	 ≤	 TIF(θ	 =	 –1.50)	 ≤ 5.716 5.694

12 7.219 	 ≤	 TIF(θ	 =	 –1.25)	 ≤ 7.259 7.239

13 8.955 	 ≤	 TIF(θ	 =	 –1.00)	 ≤ 8.991 8.973

14 10.827 	 ≤	 TIF(θ	 =	 –0.75)	 ≤ 10.859 10.843

15 12.765 	 ≤	 TIF(θ	 =	 –0.50)	 ≤ 12.793 12.779

16 14.671 	 ≤	 TIF(θ	 =	 –0.25)	 ≤ 14.695 14.683

17 16.414 	 ≤	 TIF(θ	 =	 0.00)	 ≤ 16.434 16.424

18 17.846 	 ≤	 TIF(θ	 =	 0.25)	 ≤ 17.862 17.854

19 18.865 	 ≤	 TIF(θ	 =	 0.50)	 ≤ 18.877 18.871

20 19.437 	 ≤	 TIF(θ	 =	 0.75)	 ≤ 10.445 19.441

21 19.495 	 ≤	 TIF(θ	 =	 1.00)	 ≤ 19.499 19.497

22 18.857 	 ≤	 TIF(θ	 =	 1.25)	 ≤ 18.865 18.861

23 17.371 	 ≤	 TIF(θ	 =	 1.50)	 ≤ 17.383 17.377

24 15.112 	 ≤	 TIF(θ	 =	 1.75)	 ≤ 15.128 15.120

25 12.375 	 ≤	 TIF(θ	 =	 2.00)	 ≤ 12.395 12.385

26 9.507 	 ≤	 TIF(θ	 =	 2.25)	 ≤ 9.531 9.519

27 6.847 	 ≤	 TIF(θ	 =	 2.50)	 ≤ 6.875 6.861

28 4.658 	 ≤	 TIF(θ	 =	 2.75)	 ≤ 4.690 4.674

29 3.037 	 ≤	 TIF(θ	 =	 3.00)	 ≤ 3.073 3.055

30 1.927 	 ≤	 TIF(θ	 =	 3.25)	 ≤ 1.967 1.947

31 1.202 	 ≤	 TIF(θ	 =	 3.50)	 ≤ 1.246 1.224

32 0.743 	 ≤	 TIF(θ	 =	 3.75)	 ≤ 0.791 0.767

33 0.454 	 ≤	 TIF(θ	 =	 4.00)	 ≤ 0.506 0.480

34 Content area A:	 9 items

35 Content area B:	 3 items

36 Content area C:	 18 items

37 Content area D:	 30 items
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Table 4:	 IRT-TTCF2P Constraints

Constraint Lower 
Bound TTCF (θ) Upper 

Bound
TTCF from  
Reference

1 Conditional Difficulty at θ = -1.5: 16.636 	 ≤	 Σ[Pi(θ	 =	 –1.5)	 ≤ 17.636 17.136

2 Conditional Difficulty at θ = 1.5: 50.656 	 ≤	 Σ[Pi(θ	 =	 +1.5)	 ≤ 51.656 51.156

3 Content area A:	 9 items

4 Content area B:	 3 items

5 Content area C:	 18 items

6 Content area D:	 30 items

Criteria Used to Evaluate Test Parallelism

Average Test Overlap Rate (ATOR)

Test overlap rate is an important index to consider in ensuring the secu-
rity of test items. In evaluating the test parallelism produced by the three 
ATA methods, it should be emphasized that test overlap rates were simply 
observed as an outcome variable and used as a supplemental criterion to 
evaluate test parallelism in the study. For example, when all ATA approaches 
yield similar degrees of test parallelism, the method with smaller ATOR 
can be considered as better than the others in assembling parallel forms 
because it generates a comparable degree of test parallelism that would be 
less likely to compromise test security. Test overlap rate refers to the pro-
portion (or percentage) of items shared by a pair of constructed forms of 
a fixed length. The average test overlap rate between pairs of constructed 
test forms can be obtained by computing the percentage of test overlap 
for all possible pairwise constructed forms, and then taking the average 
over all of these percentages. To derive this index, a random variable Y is 
defined as the number of common items shared by any paired tests, and 
Y/n is the overlap rate for any two tests, where n is the test length and  
Y = 1, 2, 3, ..,y,.., n. Z is defined as the number of all possible paired test 
forms, given that C test forms are constructed, and equals  

C 
2 .( )
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Accordingly, the average test overlap rate (ATOR) is defined mathemati-
cally as follows.

is the sum of test overlap rates for all possible paired tests. 

	 In this study, ATOR was computed and compared to an expected 
baseline item overlap rate, E(BOR) (Chen, Ankenmann, & Spray, 1999). 
E(BOR) is the test-overlap rate when only the content constraints are 
imposed for automated test assembly. The value of E(BOR) could be used 
as a benchmark for constraining test overlap rate that would be less likely 
to compromise test quality because this index ensures that content speci-
fications will be met. Accordingly, comparisons of ATOR and E(BOR) are 
important in evaluating test equity yielded by the ATA methods because a 
large difference between ATOR and E(BOR) would signal a possible problem 
in test security resulting from unacceptable overlap in items among the 
generated test forms. When a large difference occurs between ATOR and 
E(BOR), the item-exposure rate may need to be specified to reduce the 
item-reuse frequency for constructed test forms.

Index of Content Parallelism (CP)

A constructed test is parallel to the reference test in content if it has the 
same content distribution as the reference test. A measure of this simi-
larity is the percentage of content specifications met. For example, a con-
structed test that has a content distribution of 8 A items, 4 B items, 18 
C items, and 30 D items has content parallelism of 58/60×100% = 97%, 
given that the reference test has a content distribution of 9 A items, 3 B 
items, 18 C items, and 30 D items.

Index of Statistical Parallelism

The degree of statistical parallelism was evaluated using the indices of the 
degree of distributional congruence (i.e., Item characteristic curve paral-
lelism or ICCP), Smirnov statistic T, test difficulty and variability indices, 
and the conditional error variance of observed test score X (i.e., CEV of X). 
These indices were introduced in detail below.

Item characteristic curve parallelism (ICCP)

According to van der Linden and Luecht (1998), a constructed test form is 
strongly parallel to the reference form if and only if Σ[Pi(θ)]m = Σ[P*i(θ)]m, 
m = 1, 2,…, n, where Pi(θ) is the item characteristic curve for the ith item 
on the reference test, P*i(θ) is the true item characteristic curve for the ith 

ATOR  =   , where
∑ 

Y
n 

Z
∑ 

Y
n 
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item on the constructed test, m is the mth (noncentral) moment, and n is 
the number of items in a test. In other words for two tests to be exactly 
parallel, they must have identical moments of P(θ) for all values of θ, and 
thus they have identical distributions of P(θ) for all values of θ. 

The approach used in this study to describe the commonality between 
the two conditional distributions of P(θ) was a measure of the percent of 
overlap of the two distributions. This overlap percentage has been used in 
other studies to describe the degree to which two distributions are con-
gruent (Spray & Miller, 1992). Based on the equation developed by Spray 
and Miller (1992), the degree to which the distributions at a particular 
latent-ability level (for the reference test and the constructed test) are con-
gruent has been defined as OVR(θ)100%, where

Equation 1:

ƒ [P(θ)] and ƒ [P*(θ)] are the density functions (as histograms or bars) 
at a particular θ level for the reference test and the constructed test, 
respectively, and k denotes the number of bins formed for describing the 
histograms. The value of OVR(θ) lies between 1.0 (signifying complete 
overlap) and 0.0 (signifying no overlap). For example, two density func-
tions share half of their density when OVR(θ)100% = 50%. Figure 1 (next 
page) represents OVR(θ)100% = 100% for θ= –1. If this result generates 
across the entire distribution of θ, the constructed test can be considered 
to be strongly parallel (van der Linden and Luecht, 1998) to the reference 
test. Note that the lengths of the bars in Figure 1 represent ƒ [P(θ)] and ƒ 
[P*(θ)] as stated in Equation 1. For an entire distribution of θ, the expected 
value of OVR(θ), or Eθ{OVR(θ)}, can be considered. If it is assumed that the 
density of θ is g(θ), then

Equation 2:

The value of Eθ{OVR(θ)}100% was computed by assuming that g(θ) is 
N(0,1), where Eθ{OVR(θ)} is the expected value of OVR(θ) for an entire dis-
tribution of θ used to signify the degree of statistical parallelism between 
any two tests, and also called Item Characteristic Curve Parallelism (ICCP) 
index in this study.

OVR(θ) =       MIN[ƒ{P(θ)}, ƒ{P*(θ)}],∑ 
i=1 

k

Eθ {OVR(θ)}  = ∫ OVR(θ)g(θ)dθ.
∞

–∞
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Figure 1:	 Complete Overlap of the Conditional Distributions of P(θ) at θ = –1 
for the Reference Test and the Constructed Test
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Smirnov Statistic T 

The Smirnov T is defined as the maximal absolute vertical distance 
between two distribution functions (Conover, 1980). For this study, the 
Smirnov T was used to describe the similarity in conditional distribu-
tions of P(θ) between a reference and a constructed test by measuring the 
maximal absolute vertical distance between the two distributions of P(θ). 
The measure of the maximal absolute vertical distance between the two 
distributions of P(θ) at a given θk was defined, in this study, as MD(θk) = 
Max[ƒ {P(θk )}, ƒ {P*(θk )}], where ƒ [P(θk)] and ƒ [P*(θk)] are the density 
functions (as histograms) for the reference test and the constructed test, 
respectively, and k denotes the number of bins formed for describing the 
histograms. The value of MD(θ) can range from 0 to 1. Smaller values of 
MD(θ) indicate greater similarity between two distributions. For an entire 
distribution of θ, the expected values of MD(θ) or Eθ{MD(θ)} can be con-
sidered. If it is assumed that the probability density function (i.e., pdf) of 
θ is g(θ), and – ∞ < θ < ∞, then

Eθ{MD(θ)} was used in this study to describe the degree of discrepancy (or 
similarity) between any two tests, assuming that g(θ) is N(0,1). Tests had 
greater ICCP were expected to yield smaller Smirnov T values.

Test Difficulty and Variability Indices

The test difficulty indices included form difficulty or observed test 
mean, and the first central moment of P(θ) or test characteristic function. 
The test variability indices included form variability or observed test stan-
dard deviation, and the square root of second central moment of P(θ) or 
standard deviation of P(θ).

Conditional Error Variance of Observed Test Score X (CEV of X)

The CEV of X is important in examining the conditional reliability of 
the constructed tests at each defined proficiency level. The CEV of X at a 
single level of θ is defined as the sum of product of the conditional correct-
response probability and the complement probability over all items in a 
test at that θ value, or 

Eθ {MD(θ)}  = ∫ MD(θ)g(θ)dθ.
∞

–∞

Pi(θ) [1–Pi(θ)].∑ 
i=1 

n
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In conclusion, the criteria used to evaluate test parallelism included 
test overlap rate, content parallelism, and statistical parallelism. Statistical 
parallelism was assessed using a variety of indices. These indices included 
item characteristic curve parallelism (ICCP), the Smirnov T statistic, the 
observed test score mean, and the observed test score standard deviation. 
Several additional indices conditional on the proficiency scales also were 
examined. These conditional indices included the first central moment of 
P(θ), the second central moment of P(θ), and the conditional error vari-
ance of the observed score.

Results

Conformity to the Automated-Test-Assembly (ATA) 
Constraints

To ensure valid interpretation of the results, it is important to first 
consider the extent to which the test assembly approaches satisfied the 
imposed constraints. Psychometric constraints were met for the CTT and 
IRT-TTCF2P approaches but not for the IRT-TTIF approach. Table 5 (next 
page) shows the results for conformity to the psychometric constraints 
under each ATA approach. The term “Yes” in the tables indicates that all 
constraints were met, whereas “No” means that not all constraints were 
satisfied. However, Figure 2 (next page), displaying the information plots 
for the target test and the poorest matching test form generated with IRT-
TTIF approach, showed that the information plots for the generated and 
target tests were very similar throughout most regions of the proficiency 
scale. The differences in test information between the target and gener-
ated tests were negligible and were not considered substantial enough to 
invalidate the IRT-TTIF approach and subsequent results for answering 
the research questions posed in this study. Content constraints were met 
for all ATA approaches. Therefore, all constructed test forms produced 
100% content parallelism (CP).
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Table 5:	 Results for Conformity to the Psychometric Constraints and the 
Percentages of the Unique Items in the Assembled Forms under  
the CTT, IRT-TTIF, and IRT-TTCF2P Methods

Form #
Met All Targets? % Unique

CTT IRT-TTIF IRT-TTCF2P CTT IRT-TTIF IRT-TTCF2P

1 Yes No Yes 90.00% 81.67% 86.67%

2 Yes No Yes 86.67% 83.33% 98.33%

3 Yes No Yes 83.33% 81.67% 88.33%

4 Yes No Yes 83.33% 78.33% 95.00%

5 Yes No Yes 91.67% 78.33% 88.33%

6 Yes No Yes 90.00% 80.00% 91.67%

Average NA NA NA 87.50% 80.56% 91.39%

SD NA NA NA 3.62% 2.02% 4.52%

Figure 2:	 Test Information Functions for the Reference Test and IRT-TTIF 
Poorest Matching Test Form
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Average Test Overlap Rate (ATOR)
After the three ATA methods were judged to conform acceptably to 

their constraints and produce 100% content parallelism (CP), the methods 
were compared in terms of test overlap rate and statistical parallelism. 

Table 6 shows the ATOR and E(BOR) results for each ATA approach. 
The results indicate that only the CTT and IRT-TTCF2P methods yielded 
acceptable test overlap rates. The ATOR for the CTT method was 0.172, 
which was greater than the E(BOR) by only 0.172 – 0.141 = 0.031 units 
when the statistical constraints (test difficulty and observed-score vari-
ability) were added. As for the IRT-TTCF2P method, the ATOR was 0.129, 
which was smaller than but pretty close to the E(BOR) by 0.141 – 0.129 = 
0.012 units when the statistical constraints (TCF) were added. Therefore, 
no item exposure control would have been necessary using the CTT and 
IRT-TTCF2P approaches.

Table 6: 	 Average Results for Test Overlap Rate under the CTT, IRT-TTIF, and 
IRT-TTCF2P Methods (Deviation = ATOR – E(BOR))

Method E(BOR) ATOR Deviation

CTT 0.141 0.172 0.031

IRT-TTIF 0.141 0.579 0.438

IRT-TTCF2P 0.141 0.129 –0.012

On the other hand, the ATOR for the IRT-TTIF method was 0.579, 
which was greater than the E(BOR) by 0.579 – 0.141 = 0.438 units when 
the statistical constraints (TIF) were added. Therefore, item exposure con-
trol would have been necessary using the IRT-TTIF method.

Greater ATOR signifies that the item pool may not have sufficient items 
to produce alternate test forms with no common items. If the number of 
test-assembly constraints get larger, the item pool may not support well 
the construction of unique alternate forms. Under those conditions, it was 
of interest to determine whether most of the items on the reference tests 
would be selected, and thereby to learn more about the performance of the 
WDM heuristic. Accordingly, the percentages of items that were unique in 
the assembled forms (i.e., did not appear on the reference form) were noted 
as a supplemental information (Table 5, previous page). As expected, the 
IRT-TTIF method had smaller percentages of unique items than the CTT 
and IRT-TTCF2P approaches since it had more test-assembly constraints.
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Statistical Parallelism

Item Characteristic Curve Parallelism (ICCP) and Smirnov Statistic T

ICCP was defined as the expected percent of overlap between two con-
ditional distributions of P(θ) over the entire distribution of θ. This index 
represents a very strict test of statistical parallelism because achieving 
100% parallelism would require one to one congruence of item character-
istic functions across test forms. Table 7 shows the ICCP results for the six 
test forms created with each ATA method. In general, ICCP tended to be 
higher with the CTT and IRT-TTCF2P methods and lowest with the IRT-
TTIF approach, but their differences were negligible. Nevertheless, the 
IRT-TTIF approach generated greater ATOR even though it yielded similar 
degrees of statistical parallelism to the other methods.

Table 7 also shows the Smirnov statistic T results for the six test forms 
created with each ATA method. Smirnov statistic T tended to be smaller 
with the CTT and IRT-TTCF2P methods and the greatest with the IRT-
TTIF approach. The results for the Smirnov statistic T appeared to be in 
line with those for ICCP because tests that had greater ICCP were antici-
pated to yield smaller Smirnov T values and vice versa. 

Table 7: 	 Item Characteristic Curve Parallelism (ICCP) and  
Smirnov Statistic T for Six Test Forms Assembled with  
the CTT, IRT-TTIF, and IRT-TTCF2P Methods

Form #
ICCP Smirnov

CTT IRT-TTIF IRT-TTCF2P CTT IRT-TTIF IRT-TTCF2P

1 48.84% 46.54% 49.85% 0.116 0.199 0.086

2 50.63% 47.19% 46.74% 0.111 0.194 0.111

3 52.98% 49.58% 50.73% 0.090 0.178 0.144

4 50.67% 48.56% 46.67% 0.110 0.191 0.131

5 46.36% 49.92% 47.67% 0.128 0.206 0.120

6 49.20% 47.48% 48.77% 0.100 0.198 0.167

Average 49.78% 48.21% 48.41% 0.109 0.194 0.126

SD 2.22% 1.36% 1.67% 0.013 0.010 0.028

Form Difficulty – Observed Test Mean

Table 8 (next page) provides the observed test means for the assembled 
forms and their deviations from the reference test mean (i.e., 33.077) under 
the CTT, IRT-TTIF, and IRT-TTCF2P conditions. The average observed 
test mean over the six test forms for the CTT, IRT-TTIF, and IRT-TTCF2P 
methods were 33.158, 31.058, and 33.346, respectively. Additionally, 
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the corresponding average differences of the observed and reference test 
means over the six test forms were 0.081, –2.019, and 0.269. The CTT and 
IRT-TTCF2P test forms were not substantially different from the refer-
ence form in observed test mean. On average, the IRT-TTIF test forms had 
lower observed test means than the reference form. These results indi-
cated that compared to the other methods, the IRT-TTIF method not only 
performed the worst in matching the reference form difficulty but also 
produced consistently more difficult tests (i.e., 1.654 to 2.212 total-score 
units below the target).

Table 8: 	 Observed Test Means and the Corresponding Deviations  
from the Reference Test under the CTT, IRT-TTIF, and IRT-TTCF2P 
Methods (Deviation = Assembled Test – Reference Test)

Form #
Expected Observed Test Score Deviation (Reference = 33.077)

CTT IRT-TTIF IRT-TTCF2P CTT IRT-TTIF IRT-TTCF2P

1 33.288 31.136 33.479 0.211 –1.941 0.402

2 32.765 30.865 33.691 –0.312 –2.212 0.614

3 33.310 30.941 33.056 0.233 –2.136 –0.021

4 33.326 31.423 32.951 0.249 –1.654 –0.126

5 33.045 31.077 33.586 –0.032 –2.000 0.509

6 33.211 30.906 33.313 0.134 –2.171 0.236

Average 33.158 31.058 33.346 0.081 –2.019 0.269

Avg. (abs) 33.158 31.058 33.346 0.195 2.019 0.318

SD 0.218 0.207 0.295 0.218 0.207 0.295

Note: Avg. (abs) = average of the absolute values 

Form Variability – Observed Test Standard Deviation

Table 9 on the next page, shows the observed test standard deviations 
for the assembled forms and their deviations from the reference test stan-
dard deviation (i.e., 11.541) under the CTT, IRT-TTIF, and IRT-TTCF2P 
conditions. In general, the observed test standard deviations produced by 
each method were very similar to that of the reference test with differ-
ences ranging from 0.011 to 0.319. It is interesting to note that the CTT 
approach performed slightly better than the other approaches, but the dif-
ferences among ATA approaches were generally small.

The First Central Moment of P(θ) – Test Characteristic Function (TCF)

Figure 3 on the next page shows the test characteristic curves of the 
reference test form and one test form assembled with each of the three 
ATA approaches. Only one form constructed from each ATA method was 
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compared to the reference because the test characteristic curves were sim-
ilar for the six constructed forms with each ATA method. In Figure 3, these 
test characteristic functions appeared to be similar, except that of the test 
form assembled using the IRT-TTIF method.

Table 9: 	 Observed Standard Deviations and the Corresponding Deviations 
from the Reference Test under the CTT, IRT-TTIF, and IRT-TTCF2P 
Methods (Deviation = Assembled Test – Reference Test)

Form #
Observed Standard Deviation Deviation (Reference = 11.541)

CTT IRT-TTIF IRT-TTCF2P CTT IRT-TTIF IRT-TTCF2P

1 11.45 11.725 11.254 –0.091 0.184 –0.287

2 11.439 11.779 11.526 –0.102 0.238 –0.015

3 11.83 11.755 11.395 0.289 0.214 –0.146

4 11.6 11.759 11.415 0.059 0.218 –0.126

5 11.552 11.86 11.646 0.011 0.319 0.105

6 11.66 11.798 11.318 0.119 0.257 –0.223

Average 11.574 11.776 11.447 0.033 0.235 –0.094

Avg. (abs) 11.574 11.776 11.447 0.110 0.235 0.136

SD 0.158 0.051 0.147 0.158 0.051 0.147

Note: Avg. (abs) = average of the absolute values 

Figure 3:	 Test Characteristic Functions for the Reference Test and Assembled 
Test Form #1 (IRT = IRT-TTIF, IRT2P = IRT-TTCF2P)
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To provide an evaluation of differences in TCFs between the assem-
bled and reference tests, the squared root sum of squared TCF deviations 
(between the reference and assembled tests) across all proficiency points 
was derived for the six test forms generated with each method (Table 
10). This index provides an indicator of TCF deviation aggregated over 
the entire proficiency scale, and the smaller values represented greater 
conformity to the reference TCF. The results indicated that the CTT and 
IRT-TTCF2P approaches performed better than the IRT-TTIF approach in 
matching the reference TCF.

Table 10: 	 Aggregated Deviations between the Reference and Assembled 
Tests in the First Central Moment of P(θ), the Square Root of the 
Second Central moment of P(θ), and the Conditional Error Variance 
of Observed Score under the CTT, IRT-TTIF (IRT), and IRT-TTCF2P 
(IRT2P) Methods (Deviation = Assembled Test – Reference Test)

Form #
First Central Moment of 

P(θ)
Square Root of Second 
Central Moment of P(θ)

Conditional Error Variance 
of Observed Score

CTT IRT IRT2P CTT IRT IRT2P CTT IRT IRT2P

1 0.038 0.182 0.046 0.141 0.090 0.142 1.721 5.878 0.969

2 0.056 0.186 0.059 0.122 0.094 0.155 2.103 5.764 2.475

3 0.078 0.207 0.054 0.126 0.092 0.242 2.613 6.716 3.718

4 0.055 0.157 0.043 0.123 0.107 0.155 2.150 5.155 2.743

5 0.061 0.184 0.055 0.141 0.112 0.161 3.118 5.737 2.122

6 0.048 0.194 0.075 0.143 0.096 0.251 2.113 6.183 5.064

Average 0.058 0.183 0.052 0.131 0.099 0.171 2.341 5.850 2.405

SD 0.014 0.018 0.007 0.009 0.010 0.040 0.537 0.560 0.998
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To reveal more detailed information about TCF congruence, the differ-
ences in TCFs between the reference and the assembled tests (assembled 
test – reference test) at selected proficiency points with each method were 
plotted in Figure 4. Each difference curve represented the average differ-
ence over the six test forms constructed with each ATA approach. In Figure 
4, the horizontal line at a vertical axis value of 0 represented the reference 
test form. Compared to the reference form, the test forms constructed 
with the CTT and the IRT-TTIF2P methods appeared to have been more 
difficult for the examinees at lower ability (slightly below 0 on the θ scale) 
and easier for the examinees with higher ability (slightly above 0 on the 
θ scale). Figure 4 further reveals that the most noticeable TCF difference 
was found for the IRT-TTIF approach, and this method produced tests 
more difficult than the reference test over almost the entire proficiency 
scale. As a result, the IRT-TTIF approach performed the poorest among 
ATA approaches. 

Figure 4:	 Average Differences of Test Characteristic Functions between the 
Reference and Assembled Tests (IRT = IRT-TTIF, IRT2P = IRT-TTCF2P)
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The Second Central Moment of P(θ)

To provide information about the congruence among ATA approaches, 
the aggregated deviations were also calculated for the standard deviation 
of P(θ) under each ATA method (Table 10). However, there was no com-
pelling evidence that the CTT method did better than the IRT methods as 
the average deviation of the CTT method (0.131) was smaller than that 
of the IRT-TTCF2P method (0.171) but greater than that of the IRT-TTIF 
method (0.099).

To provide more detailed information about differences in congruence 
over a span of proficiency points, the conditional deviations (assembled 
test – reference test) are plotted in Figure 5. Again, each difference curve 
represented the average difference over the six test forms constructed 
with each ATA method, and the horizontal line at a vertical axis value of 
0 represented the reference test form. The deviation plots for each ATA 
method had the same pattern. The standard deviation of P(θ) of each test 
form was smaller than that of the reference test form over the middle part 
of the ability range, but greater than that of the reference test form at both 
ends of the ability scale. Furthermore, the CTT approach only performed 
the best over the middle part of the ability range because its curve was 
the nearest to the horizontal line within that range, but it did not per-
form as well as the IRT approaches at the higher and lower ability levels. In 
general, similar to the results for aggregated deviations, the performance 
of the CTT approach could be regarded to be at least as good as the IRT 
approaches.

Figure 5:	 Average Differences in Conditional Standard Deviation (or the 
Square Root of Second Central Moment) of P(θ) between the 
Reference and Assembled Tests (IRT = IRT-TTIF, IRT2P = IRT-TTCF2P)
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The Conditional Error Variance of Observed Test Score X – CEV of X 

Table 10 (page 29) and Figure 6 show the differences between the ref-
erence and generated tests in the CEV of X aggregated and conditional on 
the proficiency scale, respectively. Based on the information provided in 
Table 10, the CTT and IRT-TTCF2P approaches yielded, on the average, 
smaller aggregated deviations in the CEV of X (2.341 and 2.405, respec-
tively) than the IRT-TTIF method (5.850). Similarly, in Figure 6, the differ-
ence curves generated from the CTT and IRT-TTCF2P approaches seemed 
to be closer to the horizontal line than the IRT-TTIF method over the 
entire span of proficiency levels. Accordingly, the CTT and IRT-TTCF2P 
approaches appeared to perform better than the IRT-TTIF approach in 
terms of conformity to the reference CEV of X.

Figure 6:	 Average Differences in Conditional Error Variance of X between the 
Reference and Assembled Tests (IRT = IRT-TTIF, IRT2P = IRT-TTCF2P)
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Discussions and Conclusions

Discussion of Results

Conformity to Constraints

Overall, the results of this study were in line with Stocking et al. 
(1993). The WDM heuristic produced tests with desired properties under 
realistic testing conditions. The content specifications (or constraints) 
were matched by all automated-test-assembly (ATA) approaches (i.e., 
CTT, IRT-TTIF, and IRT-TTCF2P approaches). The CTT and IRT-TTCF2P 
approaches also always satisfied its statistical constraints in that each 
assembled test form had a mean and standard deviation within the ± 0.5 
boundaries. In contrast, the IRT-TTIF approach failed to meet the psycho-
metric constraints in many instances. In these cases, the generated test 
information functions (TIFs) did not lie within the specified boundaries of 
the TTIF. However, the violations of the constraints were not considered 
serious enough to invalidate the IRT approaches. For example, the largest 
absolute difference between the generated TIF and TTIF (12.779 – 12.520 
= 0.259) was negligible compared to the TIF of the corresponding con-
structed test form #1, 12.520, at θ = –0.5. Failure to meet targets when 
using the IRT-TTIF approach may have been due in part to the arbitrary 
specification of boundaries for the targets. For example, the generated test 
properties (e.g., TIF) may fall out of bounds due to the narrow band speci-
fied for the targets. The decision of accepting a test missing such targets 
would be at the discretion of test developers and specialists based on their 
rationales and needs to be achieved. For this study, the conformity of the 
content and psychometric constraints was judged to be acceptable for all 
ATA approaches.

Test Overlap Rate and Content Parallelism

Test overlap rate is an important index to consider in ensuring the 
security of test items. Acceptable overlap rates were found for the CTT and 
IRT-TTCF2P methods. In evaluating these results, it should be emphasized 
that test overlap rates were simply observed as an outcome variable in the 
study. The high overlap rates for the tests assembled using the IRT-TTIF 
approach suggest that the overlap rate would need to be explicitly con-
trolled to ensure adequate test security. However, if stringent test-overlap 
control is included as a test-assembly constraint, other content and psy-
chometric constraints may need to be sacrificed to meet that constraint. 
In these cases, the value of E(BOR) could be used as a benchmark for con-
straining test overlap rate that would be less likely to compromise test 
quality because this index ensures that content specifications will be met.
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Content parallelism constraints were met 100% of the time for all 
ATA approaches. This result likely occurred because only four content con-
straints were imposed and the pool had a sufficient number of items to 
meet each constraint. However, such clear trends were not observed for 
statistical parallelism, which was examined using four global indices: Item 
Characteristic Curve parallelism (ICCP), Smirnov Statistic T, observed test 
mean, and observed test standard deviation.

Global Indices of Statistical Parallelism

The findings for the four global indices of statistical parallelism (Item 
Characteristic Curve parallelism (ICCP), Smirnov Statistic T, observed 
test mean, and observed test standard deviation) varied by ATA approach. 
The tests produced by the CTT and IRT-TTCF2P approaches yielded ques-
tionable degrees of ICCP, but the ATORs for those tests were acceptable. 
Those tests did not meet the strict standard of statistical parallelism for 
achieving one to one congruence of item characteristic function not only 
because the standard was difficult to reach but also because the tests were 
not assembled to meet that requirement initially. The IRT-TTIF approach 
yielded substantially greater (about five times greater) ATOR than the 
other two approaches even though all approaches produced similar find-
ings for test parallelism. The greater ATOR for the IRT-TTIF approach may 
have been the result of the greater number of statistical constraints (i.e., 
33) imposed for the IRT-TTIF approaches than for the other two methods 
(i.e., 2 for each).

Because the ICCP index may be an overly strict criterion for statis-
tical parallelism, an alternative index (Smirnov statistic T) based on a less 
stringent criterion also was examined. The results for the Smirnov index 
showed that the CTT approach did even better than the IRT approaches 
in producing higher statistical parallelism. The ICCP and Smirnov indices 
yielded different results because they measure different statistical proper-
ties. ICCP reflects differences between distributions across the proficiency 
range, whereas the Smirnov statistic T only reflects the maximum devia-
tions between distributions. Nevertheless, the outcomes for both indices 
lead to a conclusion that the CTT approach performed at least as well as 
the IRT approaches. It is particularly noteworthy that the CTT approach 
yielded higher parallelism than the IRT approaches even though the ICCP 
and Smirnov indices are IRT-based and would therefore seem to favor the 
IRT approaches.

The CTT approach also performed better than the IRT approaches 
in terms of the observed test mean and standard deviation criteria. This 
finding is not surprising given that the CTT approach constrained tests to 
have an observed test mean and standard deviation identical to the refer-
ence form. 
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Results for the observed test mean also yielded some interesting dif-
ferences between the IRT approaches. In general, the tests assembled 
using the IRT-TTIF approach yielded greater differences with the corre-
sponding reference tests in observed-score means than those constructed 
using the IRT-TTCF2P and CTT approaches. This trend occurred when all 
ATA approaches yielded questionable degrees of ICCP. These results likely 
occurred because the IRT-TTIF approach did not constrain the tests to have 
first-order (or first-moment) equity, whereas the CTT and the IRT-TTCF2P 
approaches did. Because the ICCP index was used to evaluate the equity of 
all moments, first-moment equivalence was not guaranteed. The same pat-
tern of differences was shown for the observed-score standard deviation, 
but the differences among approaches were of smaller magnitude.

Conditional Indices of Statistical Parallelism

To gain further possible insights into differences among ATA 
approaches, indices of central tendency (TCF), variability, and measure-
ment error were examined conditionally on the proficiency scale. These 
conditional indices behaved differently with ATA approach. In general, the 
CTT and IRT-TTCF2P approaches produced similar patterns of TCF and/
or TCF difference, but those patterns were different from that of the IRT-
TTIF approach. The TCFs produced by the IRT-TTIF approach were sub-
stantially farther away from the reference TCF than those for the other 
two approaches. This result likely occurred because test difficulty (e.g., rep-
resented by TCF) was constrained by the CTT and IRT-TTCF2P approaches 
but not by the IRT-TTIF approach. Consistent with the results for global 
indices of statistical parallelism, the CTT approach performed as well as 
and in some cases better than the IRT approaches on conditional indices 
of test difficulty.

An important trend observed for TCFs was that the TCFs created by 
the IRT-TTIF approach were substantially more difficult than the reference 
test for examinees across most proficiency levels. Similar observations 
were made previously for the observed-score means in that the IRT-TTIF 
approach produced substantially lower means than the reference test. One 
possible reason that the IRT-TTIF approach created more difficult tests 
of medium difficulty is the correlation between IRT-based a and b param-
eters. That is, if the a/b correlations were greater in the pool than in the 
reference test, items of higher difficulty would be drawn from the pool and 
as a result tests assembled to match the reference test information func-
tion would be harder than the reference test. To evaluate this hypothesis, 
several medium difficulty reference tests with various a/b correlations 
were examined, but no clear trend was found between assembled test 
difficulty and the a/b correlations for the reference tests. Consequently, 
more research is needed to understand why this phenomenon occurred. 
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The important message from this finding for TCFs is that controlling test 
information does not guarantee equivalent levels of test difficulty even 
when the item pool contains sufficient items to support test assembly. 
This result seems reasonable given that a particular test information func-
tion could result from various combinations of item difficulties.

Results for the conditional variability of item difficulty and condi-
tional error variance of the observed test scores were in line with those 
for the conditional index of central tendency. The CTT and IRT-TTCF2P 
approaches performed better than the IRT-TTIF approach. The IRT-TTIF 
approach yielded lower P(θ) variability curves and higher conditional error 
variance curves than those for the reference tests. These results make sense 
because the IRT-TTIF approach created more difficult tests with lower vari-
ability in item difficulties than those created by the other approaches.

Summary of Discussion
Table 11, next page, summarizes the results and ratings for the CTT, 

IRT-TTCF2P, and IRT-TTIF methods under each test-parallelism evalu-
ation criterion. A rating of 3 represents the best, 2 medium, and 1 the 
worst. The content specifications were matched for the CTT and IRT 
test-assembly methods. In general, the conformity of all constraints was 
evaluated to be acceptable for all ATA approaches. Since the CTT method 
obtained the most rating 3 and the IRT-TTIF method obtained rating 1 for 
all criteria except SD of P(θ), it appeared that the CTT performed the best 
whereas the IRT-TTIF performed the worst under the conditions speci-
fied in this study. To avoid a misleading answer to the primary research 
question, the comparison and conclusion of the findings for the two  
IRT methods were conducted first followed by those for the CTT versus 
IRT-TTCF2P methods. Special emphasis will be placed on noteworthy  
differences.

Results for ICCP, ATOR, the observed test mean, and TCF yielded some 
interesting differences between the IRT approaches. The tests produced by 
the IRT approaches yielded questionable degrees of ICCP, but the ATORs 
were acceptable for the IRT-TTCF2P tests not for the IRT-TTIF tests. As 
stated previously, the greater ATOR for the IRT-TTIF approach may have 
been the result of its greater number of statistical constraints (i.e., 33). As 
for observed-score means, the tests assembled using the IRT-TTIF approach 
yielded greater differences with the corresponding reference tests than 
those constructed using the IRT-TTCF2P approach. Additionally, the TCFs 
produced by the IRT-TTIF approach were substantially farther away from 
the reference TCF than those for the IRT-TTCF2P approach. These results 
likely occurred because the IRT-TTIF approach did not constrain the tests 
to have first-order equity or equivalent test-difficulty (e.g., represented by 
TCF), whereas the IRT-TTCF2P approach did. 
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Table 11: 	 Summary of Results and Ratings for the CTT, IRT-TTCF2P (IRT2P), 
and IRT-TTIF (IRT) Methods under Each Test-Parallelism Evaluation 
Criterion

Criteria
Results for Criteria Rating

CTT IRT2P IRT CTT IRT2P IRT

Conformity to Constraints yes yes acceptable NA NA NA

Content Parallelism 100% 100% 100% NA NA NA

Average Test Overlap Rate 0.172 0.129 0.579 2 3 1

ICCP 49.78% 48.41% 48.21% 3 2 1

Smirnov Statistic T 0.109 0.126 0.194 3 2 1

Average  
Deviation from  

Reference 
(absolute 

value)

Observed Test Mean 0.195 0.318 2.019 3 2 1

Observed Test SD 0.110 0.136 0.235 3 2 1

TCF 0.058 0.052 0.183 2 3 1

SD of P(θ) 0.131 0.171 0.099 2 1 3

CEV of X 2.341 2.405 5.85 3 2 1

In many test programs and for many researchers, IRT methods are 
used exclusively to calibrate item response data and generate psychometric 
constraints. Under such situations, a target test information function 
and a target test characteristic curve at two values of θ might be speci-
fied together to create test forms not only having identical error variances 
(TIF) but also having equivalent true scores (TCF), which could fulfill the 
definition of test parallelism proposed by Lord and Novick (1968).

The ratings for almost all evaluation criteria tended to be greater with 
the CTT and lower with IRT-TTCF2P methods, but their differences in 
these indices were small or negligible. On the contrary, the IRT-TTCF2P 
method had a better rating than the CTT method for average test overlap 
rate and TCF but again the differences in these indices were very small. 
Furthermore, the finding for TCF is not surprising given that the IRT-
TTCF2P approach constrained tests to have a TCF identical to the refer-
ence form. Taken as a whole, the results of ATOR, content parallelism, 
and various global and conditional indices of statistical parallelism lead 
to the conclusion that the CTT approach performed comparably with or 
better than the IRT-TTCF2P approach in automated assembly of parallel 
test forms. Therefore, under the situations which classical item statistics 
are the only data available, assembling parallel tests by constraining clas-
sical item statistics would be an appropriate way to solve the test assembly 
problem. 

Taken together, the decision of using the CTT or IRT approaches to 
automate the assembly of parallel forms would be at the discretion of 
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test developers and specialists based on their rationales and needs to be 
achieved. However, when the IRT-TTIF method is selected for constructing 
tests, the item-exposure rate may need to be specified to reduce the item-
reuse frequency for IRT-TTIF test forms, but the degree of parallelism may 
be worsened. Another way to decrease the item-reuse frequency for IRT-
TTIF test forms is to relax the statistical constraints by broadening the 
bands surrounding the TTIF rather than specifying the item-exposure rate 
as a constraint. In other words, the information function of the assembled 
tests could be allowed to deviate from the TTIF more so that particular 
items would not be selected frequently to match the TTIF exactly.

Conclusions
The purpose of this study was to investigate the degree of parallelism 

of test forms constructed with the WDM heuristic (Swanson & Stocking, 
1993) using both classical and IRT approaches. This study was designed to 
answer a primary question: “Does the CTT approach perform as well as the 
IRT approach in the problem of parallel-test-form construction using the 
WDM heuristic?” 

The general answers to the question are that the CTT approach per-
formed as well as or better than the IRT approaches in assembling forms 
equivalent to the reference test, given that the item pool contained pre-
dominantly medium to slightly difficult items and the medium-difficulty 
reference test distribution was specified. That is, when the pool could supply 
adequate items for assembling parallel test forms, the CTT approach per-
formed at least comparably with the IRT approaches in assembling parallel 
tests. 

Based on the results of this study, the test forms assembled by each 
method could be considered to be pre-equated for the weaker defini-
tions of parallel forms but not for the stricter definition of test paral-
lelism. As stated in the introduction session, the goal of pre-equating is 
to derive equating transformations before test administration. If a par-
ticular definition of test parallelism (stricter or weaker) holds for the con-
structed forms, the goal of pre-equating can be considered to be achieved. 
McDonald (1999) proposed definitions for various degrees of test paral-
lelism between test forms. For example, test forms are regarded as TIF-
parallel if they have identical test information functions; ICC-parallel if 
they have identical item characteristic curves. Accordingly, test forms can 
be regarded as TCC-parallel if they have identical test characteristic curves, 
and regarded as test-mean-and-SD-parallel if they have identical observed 
test means and standard deviations. The three ATA approaches used in this 
study constrain the tests to have identical test means and standard devia-
tions, TIFs, and TCFs, respectively. For this study, the conformity of the 
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constraints was judged to be satisfied or acceptable for all ATA approaches, 
and thereby the weaker definitions of parallel forms hold. It is interesting 
to note that the CTT and IRT-TTCF2P methods also yielded satisfactory 
degrees of test parallelism in terms of the psychometric criteria, except 
ICCP, used to evaluate test parallelism. On the other hand, the ICCP index 
in this study corresponds to McDonald’s ICC-parallelism, which represents 
a strict definition of parallel forms. In this study, all ATA approaches pro-
duced tests with questionable degrees of ICCP, and thereby the stricter 
definition of test parallelism does not hold.

The CTT method appeared to work better in assembling forms equiva-
lent to the reference test when the item pool contained predominantly 
medium to slightly difficult items and the medium-difficulty reference test 
distribution was specified. To investigate if this result can generalize to 
other conditions, in the future, a different study may be conducted with 
different types of item pools (e.g., item pool with higher or lower difficulty 
levels) and/or different sizes of item pools. Different types of statistical 
constraints may be specified together to produce test forms that match 
the requirements of particular testing programs. 
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