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Abstract: 

Valid formative assessment is an essential element in improving both student learning and the 
professional development of educators. Various shortcomings in common assessment modalities, 
however, hinder our ability to make and evaluate such formative decisions. The diffusion of com-
puter technology into American classrooms offers new opportunities to evaluate student learning 
and a rich, new source of data upon which to make inferences about the formative interventions 
that will improve learning. The path from data to inference, however, requires appropriate method-
ologies that can fully exploit the data without discarding or oversimplifying the behavioral complex-
ity of student activity. This study used IMMEX™, a computerized simulation and problem-solving 
tool, along with artificial neural networks as pattern recognizers to identify the common types 
of strategies high school chemistry students used to solve qualitative chemistry problems. Then, 
based on the calculated probabilities that students would transition between these strategy types 
over time, Markov hidden chain analysis allowed us to develop a model of the capacity of the cur-
rent curriculum to produce students able to apply chemistry content to a real-world problem.
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Background

Valid formative assessment is essential to the advancement of student learn-
ing and the development of pedagogical content knowledge in teachers (Nathan, 
Koedinger, & Martha, 2001). Most currently accepted pencil-and-paper standard-
ized tests, however, are not designed as formative assessment tools (Bransford, 
Brown, & Cocking, 1999; American Educational Research Association, 2000), 
and many performance-based assessments suffer from validity (Barton, 1999), 
pedagogical (Lowyck & Poysa, 2001), logistic, time and cost problems (Quellmalz, 
Schank, Hinojosa, & Padilla, 1999). Moreover, recent thinking in the field of 
educational assessment suggests that formative assessments must focus less on 
how closely student responses match a pre-determined model and more on the 
competency of the performance as a whole (Pellegrino, Chudowsky, & Glaser, 
2001). So, while the unstructured nature of such student responses makes the 
evaluation of these types of performances difficult, the need for such evaluations 
is likely to increase. As computer hardware becomes cheaper, connectivity easier, 
and software development more rapid, computerized learning and assessment 
simulations arguably will become ubiquitous throughout the American educa-
tional system. With the appropriate methodologies to analyze and fully exploit the 
rich source of data from performances on these types of simulations, new ways of 
informing formative pedagogical interventions in a timely and valid manner seem 
possible.

The Interactive Multi-media Exercises (IMMEX™) software is a web-based 
problem authoring, presentation, and assessment tool that allows teachers to 
develop and present domain specific simulations to their students. The software 
has proven effective because it allows simulation authors to combine a real-world 
problem with specific tests and reference items that may yield information about 
that problem, and it presents students with the opportunity to develop and test 
hypotheses about a solution to the given challenge in a realistic setting. Authors 
may also add reference items that students can access in their attempt to solve the 
problem. Moreover, the authoring tools in IMMEX allow educators to tailor the 
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content of existing simulations to the specific curricular objectives and particular 
classroom and student contextual variables an instructor feels are important. For 
example, teachers may delete certain reference items for Advanced Placement (AP) 
students because students are required to memorize these items for the AP test. By 
allowing authors to change the results of specific tests, these same authoring tools 
also allow teachers to easily develop different versions (cases) of each problem. 
For example, the problem set in this study contains cases like sodium hydroxide, 
potassium carbonate, and lithium nitrate. The cases in a medical school problem 
set might be different diseases requiring diagnosis. Multiple cases allow students 
numerous opportunities to apply their knowledge in similar but not identical situ-
ations or to attempt problems with different degrees of difficulty. Different cases 
also allow teachers to monitor changes in student performance over time. Although 
the number of informational items available to the student does not change from 
case to case, the content knowledge required to interpret various test results can 
vary widely between cases. Consequently, a single problem set containing multiple 
cases can be used to assess students of diverse ability levels. While standard Item 
Response analysis has produced good models of case difficulty both in the problem 
set discussed in this paper as well as in other IMMEX problem sets, most teachers 
currently choose particular problem sets and the specific cases their students will 
attempt to solve more subjectively. For this study, the teacher developed 23 cases 
of an IMMEX qualitative chemistry problem set as a tool to assess how well her 
students could apply the concepts taught in first-year high school chemistry.

After the initial presentation of the problem statement (see Figure ı), students 
solve IMMEX cases by accessing as much of the available information as they 
feel necessary and then selecting an answer from a list of possible answers or by 
typing in their solution. While students can develop and test all their hypotheses 
by accessing information in any sequence they choose, the verification or rejection 
of each hypothesis usually relies on how well the student interprets individual test 
results. An example of the information a student would be expected to interpret is 
also shown in Figure ı. In this case, a student should be able to retain or reject a 
hypothesized unknown based on these results.
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Figure 1

Figure 1. The opening problem-statement screen of the problem used in this study is shown in the upper 
left-hand corner of the window. This screen states the goal of the exercise to the students and, for this prob-
lem set, is identical for all the cases. Also shown are two of the 20 information items available to the students. 
The item in the upper right-hand corner shows the result of flame testing the unknown and the frame at the 
lower right of the figure is a precipitation reaction. Although combined into a single window here, students 
would actually see each item in a separate window while running IMMEX cases and would access each piece 
of information through the drop-down menus shown at the top of the screen.

As a student proceeds through IMMEX cases, the software’s presentation 
tool records the student’s every selection as s/he attempts to solve each case. 
This feature allows for both real-time and off-line analysis of how students solve 
a particular case, as well as how student ability changes over time. Since students 
access IMMEX problems using the World Wide Web, the IMMEX database con-
tains thousands of student performances on hundreds of problem sets in different 
knowledge domains. While IMMEX records both the informational item a student 
chose and the order in which s/he chose it, for the purposes of this research a stu-
dent performance is defined as all the items a student viewed before s/he proposed 
a final solution to the case being attempted. Information such as the student’s 
answer, date, time and whether the student actually solved the problem correctly 
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is also recorded by IMMEX, in addition to student performance data. The next 
section will address the tools used to analyze the vast amounts of data recorded by 
IMMEX.

Methods and Data Sources

In this study, one hundred thirty-four first-year chemistry students at a sub-
urban Southern California high school were asked to identify various unknown 
chemical compounds using the IMMEX computer simulation software. Student 
grade point averages, first semester grades, standardized test scores and student 
demographic data suggest this population of students have characteristics typi-
cal of student populations at suburban American high schools with the exception 
that African American students were under represented and Asian American stu-
dents were overrepresented in this group (National Center for Education Statistics 
[NCES], 1999). 

The IMMEX problem set used by the students in this study is called Hazmat 
(short for Hazardous Materials). Hazmat is a qualitative chemistry problem set 
in which students are told that there has been an earthquake that has caused a 
number of chemicals, some of which may be hazardous, to fall off stockroom 
shelves. As the labels have been obliterated or mixed up with the labels of other 
compounds and time is of the essence, the school has asked for student help in 
identifying the spilled chemicals. Each chemical compound represents a unique 
case in the Hazmat problem set. In addition to general stockroom inventory infor-
mation, there are three physical tests and eight chemical tests the students can 
conduct on each unknown substance. The students may also review any of eight 
library reference items in their attempt to identify the unknown. Students must 
identify the correct unknown from among 57 possibilities on one of two tries at a 
solution. After the presentation of the problem, students may proceed through the 
problem space in any manner they choose before ultimately proposing the identity 
of the unknown. Although the information returned by each menu item may be 
different from case to case within each problem set, all 23 cases in the Hazmat 
problem set contain the same 20 menu items. In this study, the students’ teacher 
decided to use only those Hazmat cases that produced positive results when stu-
dents chose to conduct a flame test. Both IRT analysis and the teacher’s experience 
suggest these are the easiest of the Hazmat cases for this group of students to 
solve. IRT analysis also suggests these cases are similar, although not identical, to 
one another in difficulty. Each student received, on average, five individual cases 
in random order.

While a single student action is occasionally informative in IMMEX problem 
solving (such as when a student chooses to solve the problem as an initial move 
and without viewing any information), experience suggests that the sequence of 
actions or the presence of a group of individual actions are usually much more 
telling about student understanding (Stevens, Ikeda, Casillas, Palacio-Cayetano, & 
Clyman, 1999). The number of possible information items in a problem set and 
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the degree of difficulty of the cases a student must solve (as determined by IRT) 
are generally good indicators of the number of menu items students will choose to 
view before solving individual cases of a problem set. One average, the students in 
this study chose to view ı7 items before attempting a solution.

Experience also suggests that student performances on cases of IMMEX prob-
lem sets are seldom entirely random in nature (Underdahl, Palacio-Cayetano, & 
Stevens, 2001). In fact, while students may eventually look at all the information 
contained in a problem space, they will often view menu items sequentially rather 
than follow a more haphazard strategy. Nevertheless, given the number of pieces of 
information available to the student, the possible number of unique performances 
is factorially large. This can make the evaluation of student problem solving dif-
ficult. The overwhelming nature of evaluating student problem solving becomes 
especially apparent when the total number of student performances requiring 
analysis increases beyond one hundred or so. Consequently, as problem spaces 
increase in size and student performances multiply, some method must be used to 
help discern patterns in the data. Cognitive scientists like Fischer and Bidell (1997) 
suggest that to truly understand such activity, one must develop ways to analyze 
the patterns of stability and order within the variation of human activity without 
discarding behavioral complexity. Other literature also suggests that it is unwise 
to merely compare students or other novices to their teacher or another expert 
(Glaser & Baxter, 2000). 

Novices treat problem solving differently than experts (Messick, 1989; Glaser 
& Silver, 1994; Baxter & Glaser, 1997), so evaluating novice performances only in 
terms of how well they match an expert is bound to limit the acceptable student 
approaches or to discard important complexities of student problem solving. Nev-
ertheless, it is often unclear what features of novice performances will make them 
successful or effective, and therefore, it is virtually impossible to make estimates 
about the distributions of these features across performances. This suggests that 
a non-parametric approach in evaluating such performances is warranted. There-
fore, rather than develop a model of behavior and then fit subsequent student per-
formances to that static model, we have chosen to use the demonstrated pattern 
recognition ability of artificial neural networks (ANN) to identify groups of similar 
performances in the data (Principe, Euliano, & Lefebvre, 2000). 

Our neural network analysis is a two-stage process. First, we use unsupervised 
neural networks to find clusters of similar performances based on which items 
of information a student viewed when solving each case. We present a student 
performance to the ANN as an ordered series of ones and zeros, each represent-
ing a menu item. A one indicates the student viewed a particular menu item; zero 
indicates the student did not. The ANN, in turn, represents this input as a point 
in 20-dimensional space and finds data clusters by moving a digital marker to the 
mathematical center of each cluster. The neural net locates this center by moving 
each marker until the Euclidian distance between a marker and the data point(s) 
closest to it is minimized. Supervised training is then used to refine the cluster 
boundaries. Unlike unsupervised training which uses an internal distance metric 
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to determine similarity between performances, in supervised training we present 
the ANN both a student performance and the cluster that performance is expected 
to represent. Consequently, we use unsupervised networks as a preprocessor to 
extract groups of similar performances from the data set, and then feed that infor-
mation to supervised networks in order to refine the boundaries of the identified 
clusters. As described elsewhere (Stevens, Lopo, & Wang, 1996; Vendlinski & 
Stevens, 2000; Vendlinski, 2001), this methodology consistently clusters the same 
performances together 90% of the time. 

Generally, the particular feature(s) of the performances in individual clusters 
that make them similar are easily discerned. For example, it is common for stu-
dents to attempt to identify the unknown in a Hazmat case with just one test. Thus, 
a common cluster contains student performances with just this one test. Other 
clusters are more complex. In order to understand what these clusters represent 
we used a technique called mock performance analysis. In mock performance analy-
sis, we create a performance that represents those features thought to describe 
each cluster. Then each of these mock performances is fed into the appropriately 
trained artificial neural network. By adding to and subtracting from each mock 
performance, the features of each performance that cause the neural net to cluster 
them together are identified. Using this technique, we have routinely found that 
ı00% of the mock performances cluster where initially anticipated, if the cluster 
being examined contained at least three performances. Not only does this tech-
nique validate the interpretation of each cluster, but, by identifying the salient 
menu items to describe each cluster, the differences between clusters become 
readily apparent. In addition, the sensitivity of the clustering network to variations 
in student performances can be quantified. We term each of the resulting cluster 
descriptives a strategy.

After using artificial neural networks to assign each student performance to a 
cluster, and ordering these performances chronologically for each student, longitu-
dinal models of student problem solving emerge. In this study, a student’s first per-
formance strategy was compared to the most common strategy used by the student 
to solve all the Hazmat cases the student attempted. When viewed individually, this 
type of analysis addresses the progress individual students make over time. When 
analyzed as a classroom group, such an analysis describes students more generally, 
and becomes an indication of class progress or, with multiple classes, teachers and 
schools, of more generalized learning trends. In these larger student groups, the 
likelihood students will transition from using one strategy (the beginning state) to 
subsequently using the same or another strategy is easy to calculate. When repre-
sented in condensed form these likelihoods form a transition matrix. Table 4 is an 
example of such a transition matrix.

By using the transition matrix and elementary matrix multiplication, the distri-
bution of students across clusters can be calculated. With a large enough student 
sample, both the available literature (Dalphin & Borden, 1997; Soller & Lesgold, 
2000) and our prior research suggest it is plausible to make the assumption that 
without external intervention, the transition likelihoods for a group of students 
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will remain constant in the near term. Consequently, it becomes possible to apply 
Markov models to determine the distribution of students after each student works 
a number of successive cases in a problem set. Markov models are used to math-
ematically represent systems composed of individuals who can be classified into 
a finite number of states and where the probability that an individual will move 
between those finite states over time is known. In Markov modeling, the transition 
probabilities, once determined, are static and transitions are assumed to occur at 
fixed points within a time interval. The analysis of hundreds of student perfor-
mances suggests that the probability a student will transition between various 
states is relatively constant within classes of the same teacher. Therefore, creating 
a Markov model of such a group is both possible and straightforward. In addi-
tion to the transition matrix, the number of students in each state at a particular 
time can be represented by a distribution vector where each entry in the vector 
represents the number of students in a particular state at a particular time. The 
product of multiplying this distribution vector by the complete transition matrix 
is the distribution vector one can expect after one time interval. In this case, the 
resulting distribution vector represents the number of students in each state after 
completing a single Hazmat case. Assuming that the transition matrix remains 
consistent over time, multiplying the resulting distribution vector by the transition 
matrix again will yield a prediction of the number of students using each strat-
egy after two cases. A third multiplication will yield the distribution vector after 
three cases, and so on. Although one cannot use this method to trace the path an 
individual student followed to arrive at a particular strategy type (hence the name 
hidden chain models), the results of such an analysis is suggestive about the per-
formance of the student group as a whole. Moreover, repeatedly multiplying by the 
fixed transition matrix generally produces a steady state. Exponential multiplica-
tion of the transition matrix produces the same result expressed as percentages 
of students in each state. Consequently, this form allows comparisons of groups 
of different sizes. Therefore, steady state diagrams provide a metric by which we 
can evaluate the performances used by a teacher’s students. Although not a major 
focus of this paper, the diagrams would allow comparisons of different classrooms 
to one another even though different teachers taught the same content to different 
classes and the students used different strategies to solve the cases in a problem 
set. Moreover, these diagrams allow us to model not only the effectiveness of the 
current curriculum, but also the predicted effect of proposed instructional inter-
ventions, and how such interventions might ultimately affect the strategies used by 
these students. This technique is discussed at the end of the next section. 
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Discussion

Students use a variety of strategies to solve IMMEX cases. Consequently, the 
student strategies represented by each ANN cluster can vary widely. Nevertheless, 
many strategies are often closely related and may only differ by one or two items of 
information. In fact, in some recent performances, the major difference between 
two strategies was whether a student viewed the problem summary (epilogue). 
Another major difference between strategies is the success students have solving 
a case using one strategy or another. For this research, we determined the effec-
tiveness of student strategies by calculating the odds a particular strategy would 
produce the correct answer to Hazmat cases. Good strategies tended to produce 
correct answers, while poor strategies did not. We use odds here to allow for the 
comparison of solve rates between different types of cases (as the cases were deliv-
ered randomly, not all cases were delivered with the same frequency), and because 
the natural logarithm of the odds equals student ability (θ) in the one-parameter 
logistic (Item Response) model. Because the cases in Hazmat can be quite dis-
similar, students generally will adapt their strategies to account for changes in 
the cases. For example, a student may be able to identify the unknown compound 
potassium hydroxide using a flame test and litmus paper, but would have to 
modify this strategy to identify the compound potassium nitrate. Still, one might 
reasonably expect that a student who developed the ability to solve one case would 
demonstrate the ability to effectively solve other, different cases, especially if the 
student really understood the concepts required to solve these types of problems.

Strategy Types

As expected, in IMMEX problem sets where the cases require students to 
modify a strategy as the unknown changes, students often do not duplicate a spe-
cific strategy exactly; rather the students adapt their strategy to the case they are 
trying to solve. Nevertheless, there are enough similarities between the different 
strategies students use to suggest a more general strategy classification scheme 
might be appropriate. In particular, we have noticed that a number of students use 
strategies that investigate very few items of information before making an attempt 
to solve the case. An example of a limited strategy in Hazmat is the strategy of only 
viewing the effect of placing the unknown in a flame. While this test can identify 
the metallic ion in a compound, it tells the student nothing about other parts of 
the compound. In fact, none of these so called limited types of strategies investi-
gate enough information to conclusively solve the problem. At the other extreme, 
students investigate more than enough information to solve the problem and 
often continue to view items even after they have sufficient information to reach 
a definitive answer. A common example of this strategy is to look at every menu 
item in the problem space. It is apparent from other research we have conducted 
(Vendlinski, 2001) that students using this strategy often do not know what infor-
mation is relevant to hypothesis confirmation and rejection or how to interpret 
that information. It should also be noted, that although students will sometimes 
use this strategy to define the boundaries of the problem space in other IMMEX 
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problem sets, we have not seen this behavior in students solving Hazmat, possibly 
because the 20 menu item problem space is relatively small. We have collectively 
termed these types of strategies prolific. Students using either limited or prolific 
types of strategies are unlikely to solve the case being attempted. In other words, 
overall students using these strategies had less than even odds of correctly identify-
ing the unknown. 

However, when students used strategies that focused only on key pieces of 
information, they were more likely than not to solve every case they attempted. 
These strategies were classified as efficient types of strategies. Efficient strategies 
tend to be both case and contextually sensitive. For example, one group of AP 
chemistry students was very successful in determining the presence of unknown 
bases by using a strategy which involved the addition of an acid to the unknown, 
whereas another group of first-year chemistry students at the same school were 
more successful using a strategy that involved using litmus paper to identify the 
presence of a base. While both strategies were effective for both groups of stu-
dents and were very focused, the number of students using each strategy differed 
between groups. Anecdotally, the AP teacher indicated that when teaching stu-
dents ways of identifying a base she had stressed the addition of an acid, whereas 
the teacher of first-year students had focused on the use of litmus paper. 

Because strategy types are, in part, determined by how effective they were for 
the students who actually used them in a particular context, they lend themselves 
to comparisons across classes as well as comparisons within a single class. While 
the consequence of this is that a particular strategy could be very effective in one 
context and ineffective with a different group of students in a different setting, we 
have not found this to be a common occurrence. In fact, it is more common for 
certain strategies to be effective no matter where they are used, but to be used by 
differing percentages of students in various contexts. Our findings are very simi-
lar to the cognitive groups Siegler (1998) identified among first grade arithmetic 
students. The next section illustrates how our findings might be used to develop a 
formative teaching tool.

Initially, approximately one-third of the students studied here chose to use 
limited types of strategies, one-third chose prolific strategies, and one-third chose 
efficient strategies. As expected, a significant number of students who solved 
the first Hazmat case presented to them using an efficient type of strategy, used 
efficient types of strategies to solve most of the other Hazmat cases presented 
to them. More surprisingly, students using limited or prolific types of strategies 
predominately continued to use limited or prolific strategy types, respectively, in 
their attempts to solve future cases even though those strategies seldom produced a 
correct answer. These relationships are shown in Table ı and, as indicated there, are 
significant.
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Table 1 Relationship Between First Strategy High School Student Used and 
the Strategy the Student Used Most Often

Most Frequent Strategy

Limited Efficient Prolific

First 
Strategy

Limited 30  6  8

Efficient  5 23  9

Prolific  5  8 35

Note. This table shows the relationship between the type of strategy a student used to solve his or her first 
Hazmat case and the type of strategy the same student used most often (the mode) to solve subsequent 
Hazmat cases. The distribution around the mode is relatively small. Subsequent to the first performance, 
on average, 70% of a student’s performances were of the same type as the student’s modal strategy. 
Overwhelmingly, without instructional intervention, the strategy type used by a student in her or his initial 
performance predicts the strategy type that student will continue to use most often on subsequent Hazmat 
cases. The chi-square statistic suggests the relationship is not random. (χ2 = 70.5; d.f. = 4; p < .001).

This same trend is evident in other classes, at other ability levels and on differ-
ent IMMEX problem sets. For example, Table 2 shows the relationship between the 
strategy type first-year undergraduate chemistry students used to solve their first 
case of a more complex qualitative chemistry IMMEX problem set called Desper-
ately Seeking Solution and the strategy type used most often by these same students 
to solve subsequent cases of this problem set.

Table 2 Relationship Between First Strategy College Student Used and the 
Strategy the Student Used Most Often

Most Frequent Strategy

Limited Efficient Prolific

First 
Strategy

Limited 28  3  7

Efficient  2  4  1

Prolific 11  1 28

Note. This table shows the relationship between the type of strategy a first-year undergraduate college 
chemistry student used to solve his or her first qualitative chemistry case and the type of strategy the same 
student used most often (the mode) to solve subsequent cases of the same problem set. Overwhelmingly, the 
strategy type used by a student in her or his initial performance correlates with the strategy type that student 
continued to use on subsequent cases. (χ2 = 41.96; d.f. = 4; p < .001).

The degree of difficulty of the cases or problem set (as determined by IRT 
analysis) also seems to have an effect on the strategy type students use to solve 
the cases of IMMEX problem sets. Research suggests that as a problem space 
becomes easier for students to manage (either because the ability level of the 
students increases or the problem spaces become less complex), students are less 
likely to use limited types of strategies. In fact when the college undergraduates 
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just described attempted to solve Hazmat cases, no student used a limited type of 
strategy to solve the problem. On the other hand, when the first-year high school 
chemistry students in this study were asked to solve the more complex qualitative 
chemistry problem mentioned above, they used almost entirely limited types of 
strategies to do so. Table 3 shows this:

Table 3 Relationship Between First Strategy High School Student Used in 
Solving Complex Case and the Strategy the Student Used Most 
Often in Solving Complex Case

Most Frequent Strategy

Limited Efficient Prolific

First 
Strategy

Limited 56 11  2

Efficient 10 14  3

Prolific  6  0 12

Note. The same relationship between the type of strategy a high school student used to solve the initial case 
of the more complex IMMEX problem, Desperately Seeking Solution, and the type of strategy s/he uses most 
often is evident in this table. As the problem space has become more complex, students begin to favor the 
use of limited types of strategies. (χ2 = 64.4; d.f. = 4; p < .001).

The types of strategies used by a group of students, therefore, seems to suggest 
whether cases of a particular problem set like Hazmat are too easy or too difficult. 
When almost all students use limited types of strategies to solve presented cases (a 
type of “floor effect”), the cases or the entire problem set is probably too difficult. 
Likewise, when most students use efficient or prolific types of strategies to solve 
cases in a problem set (a type of “ceiling effect”), those cases are probably not chal-
lenging enough for the students or indicate that the students have mastered the 
material. When, however, student performances demonstrate a range of strategy 
types, one may generally conclude a problem set or a group of cases is appropri-
ate for that student group. Proposed research studies seek to further quantify the 
association among student ability level, case difficulty, and strategy type selection. 
Although such considerations may be less important for summative assessment, 
they are critical when using these results to formulate curricular interventions.

Markov Hidden Chain Analysis

In fact, as will be demonstrated, when the performances of a group of students 
represent diverse solution strategies, Markov hidden chain analysis could be an 
effective tool for evaluating the instructional interventions suggested to improve 
student performances. In this case the three strategy types (limited, efficient, and 
prolific) and start become the states in a Markov model. Start is a holding state for 
students before they attempt their first IMMEX case. Since the transition probabili-
ties in Markov models show the likelihood an individual will transition from one 
state to the next, a start state is included so that the model is able to represent how 
students solve their initial case. Therefore, by definition, students never return to 
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this state. As students attempt other cases in the problem set, they again use one of 
the three strategy types to solve each new case. The partial state diagram in Figure 2
 represents state and transition likelihoods from the class of first-year high school 
chemistry students in this study.

Figure 2

 

Efficient

Prolific

Start

Limited
.29

.37.34

.26.20

.54

Figure 2. A partial transition state diagram showing the transition likelihoods from two states. The first set of 
probabilities represent the possibility that students will use a limited (.34), efficient (.29) or prolific (.37) type of 
strategy to solve their first case of the IMMEX problem, Hazmat (i.e., how they transition from the start state). 
The second set of probabilities represent the likelihood that, once a student has used an efficient type of 
strategy and so has achieved an efficient state, s/he will use a limited (.20), efficient (.54) or prolific (.26) type of 
strategy when attempting to solve his or her next case. For the sake of clarity, the transitions from the limited 
and prolific states are not shown. 

The diagram in Figure 2 can be represented by the transition matrix given in 
Table 4.

Table 4 Probability That Student Will Transition From a Strategy Type

TO:

Start Limited Efficient Prolific

FROM:

Start .00 .34 .29 .37

Limited .00 .56 .19 .25

Efficient .00 .20 .54 .26

Prolific .00 .17 .26 .57

Note. The probability that a student in this group will transition from the strategy type given in the left column 
to the strategy type identified at the top of each column is given where that row and column intersect. The 
transition probabilities actually shown in Figure 2 are presented here in bold type. As students cannot return 
to the start state once they solve their first case, the probability that they move from any state back to the start 
state is 0%. Note also, that for this group, the likelihood a student will use the same type of strategy to solve 
the very next problem (the diagonal cells of the bottom three rows) is more than 50% for each of the strategy 
types, suggesting the tenacity of prior strategy types.
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To predict and model how the students in this study are distributed among the 
strategy types after running a single IMMEX case, we multiply the initial distribu-
tion vector by the transition matrix. Since all ı34 students were initially in the Start 
state, the multiplication can be represented as shown in Equation ı.

(1) 

134    0    0    0      •

.00 .34 .29 .37

.00 .56 .19 .25

.00 .20 .54 .26

.00 .17 .26 .57

=      0    45    39    50

Assuming, as the research suggests, that these probabilities remain con-
sistent over time, the student distribution vector after the seventh case will be 
0    45    39    50  . Multiplying this vector by the transition matrix again will not 

change this distribution vector. As noted before, this steady state can also be rep-
resented by exponential multiplication of the transition matrix. The steady state 
matrix that results after seven multiplications of the transition matrix by itself is 
given in Table 5.

Table 5 Probability That Student Will Transition From a Strategy Type After 
Seven Cases

TO:

Start Limited Efficient Prolific

FROM:

Limited .00 .30 .33 .37

Efficient .00 .30 .33 .37

Prolific .00 .30 .33 .37

Note. The probability that a student in this group will transition from the strategy type given in the left column 
to the strategy type identified at the top of each column after attempting to solve seven cases of Hazmat 
is given where that row and column intersect. Assuming that the probability a student will transition from 
a given state to a subsequent state remains constant during these seven cases (Table 4), the above steady 
state is reached. The analysis of this group of students suggests that 30% of the students will settle into using 
limited types of strategies, 33% will use efficient strategies, and 37% will use prolific strategies when solving 
Hazmat cases.

As shown in Table 5, because students tend to adopt a single type of solution 
strategy from the outset of solving Hazmat cases, approximately one third of the 
students will eventually settle into each of the three strategy types. These steady 
state transition matrices then become one measure of the current effectiveness 
of a curriculum. While such steady states would allow for comparisons between 
classrooms or teachers, a more formative use is also suggested. 
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Markov Models as Formative Tools

When a teacher analyzes how the strategies identified by artificial neural analy-
sis differ, and combines the insight of that analysis with the Markov technique 
just demonstrated, various pedagogical interventions can be modeled and the pre-
dicted effectiveness of each intervention compared. For example, when reviewing 
the student performances that generated the data in Table 4, it becomes obvious 
that one of the efficient strategies students apply to identify part of the unknown 
is the use of red litmus paper. Red litmus turns blue in the presence of hydrox-
ide, so a successful red litmus test, along with an informative flame test, should 
allow the student to correctly identify these types of unknowns. Consequently, the 
teacher may decide to revisit the use and meaning of red litmus in her curriculum. 
Markov hidden chain analysis allows us to model and predict the outcomes of such 
an intervention. If we assume, for the moment, that 90% of the students in this 
class developed an understanding of and could effectively use red litmus after the 
teacher’s intervention, this would imply a change in the types of strategies used by 
those students when trying to solve Hazmat cases that involve hydroxides. More 
specifically, because the red litmus test would now be meaningful to the students 
currently using limited or prolific strategies, these students should modify their 
existing strategy of detecting hydroxide compounds to become more efficient. This 
change in student behavior would produce the transition matrix in Table 6 and the 
steady state matrix in Table 7.

Table 6 Probability That Student Will Transition From a Strategy Type 
Immediately After Instructional Intervention

TO: 

Start Limited Efficient Prolific

FROM:

Start .00 .21 .47 .32

Limited .00 .39 .41 .20

Efficient .00 .24 .49 .27

Prolific .00 .12 .44 .44

Note. The probability that a student in this group will transition from the strategy type given in the left column 
to the strategy type identified at the top of each column from his/her initial to first case (top row), and then 
from his/her first to second case (bottom three rows) of Hazmat after instruction on using red litmus paper is 
given where that row and column intersect.
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Table 7 Probability That Student Will Transition From a Strategy Type Over 
Time After Instructional Intervention

TO:

Start Limited Efficient Prolific

FROM:

Limited .00 .24 .46 .30

Efficient .00 .24 .46 .30

Prolific .00 .24 .46 .30

Note. The probability that a student in this group will transition from the strategy type given in the left column 
to the strategy type identified at the top of each column after instruction on using red litmus paper and after 
attempting to solve seven cases of Hazmat is given where that row and column intersect. Assuming that 
the probability a student will transition from a given state to a subsequent state (Table 6) remains constant 
during these seven cases, the above steady state is reached. The analysis of this group of students suggests 
that almost half the students will use efficient strategies when solving Hazmat cases after this specific inter-
vention.

Similar calculations could be made by reducing the percentage of students who 
benefit from the instruction on using red litmus paper or, if warranted, by apply-
ing them differentially to the students using different strategy types. Moreover, the 
effects of other interventions can be modeled and compared with re-teaching this 
topic. 

Conclusion

Quantitative and qualitative analysis suggest that the strategy types identified 
by artificial neural network analysis are both accurate and reliable. Moreover, this 
research suggests that such an analysis could function as a valuable formative 
tool by allowing us to evaluate teaching interventions designed to benefit both 
individual students as well as larger, more diverse, groups of students. This study 
used adaptive artificial neural network analysis to identify the common strate-
gies first-year high school chemistry students used to solve qualitative chemistry 
problems. It demonstrated that the strategies used by these students were of three 
general types. Students adopting limited types of strategies did not have enough 
information to proffer a conclusive answer before doing so. On the other hand, 
students using prolific strategies had more than enough information to precisely 
identify the unknown. In both cases, however, students adopting either strategy 
type were unlikely to correctly identify the compound. Conversely, about one-third 
of the students in this study adopted very efficient strategies that allowed them to 
focus only on information that was pertinent to correctly identifying the unknown. 
Students adopting efficient strategies were more likely than not to identify the 
unknown substance. These same strategy types are evident in groups of students 
solving cases from diverse IMMEX problem sets, especially problem sets dealing 
with content in the science domain.
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This study also found that no matter which type of strategy the student used 
to solve Hazmat cases, students would adopt that strategy type beginning with the 
first case and they would continue to use similar strategies on subsequent cases. 
This same trend has also been documented in other high school science domains, 
and among chemistry students of varying abilities (e.g., high school Advanced 
Placement, community college, and first-year undergraduates). Without instruc-
tional intervention, students appear highly unlikely to change problem-solving 
strategies, even if those strategies seldom produce a correct answer. Nevertheless, this 
research suggests that the analysis of strategies combined with Markov hidden 
chain analysis could function as a valuable formative tool.

When combined with a teacher’s insight of how the strategy types of students 
differ, Markov analysis not only suggests which interventions might be most effec-
tive for students, but also provides a metric that allows us to compare the poten-
tial effectiveness of each intervention. Moreover, since we have seen evidence of 
strategy types in student solutions from the cases of many different problem sets, 
the same type of analysis should be applicable beyond the quantitative chemistry 
domain. The methodology proposed here might offer policy makers, investigators 
in the field, and educators in the classroom, at least in the science classroom, a 
common metric that allows each to develop and to begin evaluating the effective-
ness of current pedagogy, and the effectiveness of proposed interventions.
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